Advertisement

Adding Domain Dependent Knowledge into Answer Set Programs for Planning

  • Xiumei Jia
  • Jia-Huai You
  • Li Yan Yuan
Part of the Lecture Notes in Computer Science book series (LNCS, volume 3132)

Abstract

We investigate the methodology of utilizing domain dependent knowledge in solving the planning problem in answer set programming. We provide a classification of domain dependent knowledge, and for each class, a coding scheme. In this way, domain dependent knowledge can be encoded into an existing program. Experiments are conducted to illustrate the effect of adding domain dependent knowledge for benchmark planning problems, which show that adding domain dependent knowledge in many cases substantially improves the search efficiency.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Bacchus, F., Kabanza, F.: Using temporal logics to express search control knowledge for planning. Artificial Intelligence 116(1,2), 123–191 (2000)zbMATHCrossRefMathSciNetGoogle Scholar
  2. 2.
    Bacchus, F., Kautz, H., Smith, D.E., Long, D., Geffner, H., Koehler, J.: AIPS 2000 Planning Competition (2000), In http://www.cs.toronto.edu/aips2000/
  3. 3.
    Blum, A.L., Furst, M.L.: Fast planning through planning graph analysis. In: Proc. IJCAI 1995, pp. 1636–1642 (1995)Google Scholar
  4. 4.
    Dimopoulos, Y., Nebel, B., Keohler, J.: Encoding planning problems in non-monotonic programs. In: Steel, S. (ed.) ECP 1997. LNCS, vol. 1348, pp. 169–181. Springer, Heidelberg (1997)CrossRefGoogle Scholar
  5. 5.
    Doherty, P., Kvarnstom, J.: TALplanner: An empirical investigation of a temporal logicbased forward chaining planner. In: TIME 1999, pp. 47–54 (1999)Google Scholar
  6. 6.
    Erol, K., Nau, D., Subrahmanian, V.S.: Complexity, decidability and undecidability results for domain-independent planning. Artificial Intelligence 76(1-2), 75–88 (1995)zbMATHCrossRefMathSciNetGoogle Scholar
  7. 7.
    Finzi, A., Pirri, F., Reiter, R.: Open world planning in the situation calculus. In: Proc. AAAI 2000, pp. 754–760 (2000)Google Scholar
  8. 8.
    Frisch, A., Miguel, I., Walsh, T.: CGRASS: A system for transforming constraint satisfaction problems. In: Proc. Joint Workshop of the ERCIM/CologNet area on Constraint Solving and Constraint Logic Programming, pp. 15–30 (2002)Google Scholar
  9. 9.
    Gelfond, M., Lifschitz, V.: The stable model semantics for logic programming. In: Proc. 5th ICLP, pp. 1070–1080. MIT Press, Cambridge (1988)Google Scholar
  10. 10.
    Gent, I.P., Smith, B.M.: Symmetry breaking during search in constraint programming. Research Report 99.02, School of Computer Studies, University of Leeds (1999)Google Scholar
  11. 11.
    Gupta, N., Nau, D.: On the complexity of blocks-world planning. Artificial Intelligence 56, 223–254 (1992)zbMATHCrossRefMathSciNetGoogle Scholar
  12. 12.
    Kautz, H., Selman, B.: Planning as satisfiability. In: Proc. 10th European Conference on Artificial Intelligence, pp. 359–363 (1992)Google Scholar
  13. 13.
    Levesque, H.J., Reiter, R., et al.: GOLOG: A logic programming language for dynamic domains. Journal of Logic Programming, 59–83 (1997)Google Scholar
  14. 14.
    Lifschitz, V.: Action languages, answer sets and planning. In: Apt, K.R., et al. (eds.) The Logic Programming Paradigm: A 25-Year Perspective, pp. 357–371. Springer, Heidelberg (1999)Google Scholar
  15. 15.
    Lifschitz, V.: Answer set programming and plan generation. Artificial Intelligence 138, 39–54 (2002)zbMATHCrossRefMathSciNetGoogle Scholar
  16. 16.
    Miguel, I.: Symmetry-breaking in planning: schematic constraints. In: Proc. CP 2001 Workshop on Symmetry in Constraints (SymCon 2001), pp. 17–24 (2001)Google Scholar
  17. 17.
    Niemelä, I., Simons, P.: Extending the Smodels system with cardinality and weight constraints. In: Minker, J. (ed.) Logic-Based Artificial Intelligence, pp. 491–521. Kluwer Academic Publishers, Dordrecht (2000)Google Scholar
  18. 18.
    Niemelä, I.: Logic programs with stable model semantics as a constraint programming paradigm. Annals of Math. and Artificial Intelligence 25(3-4), 241–273 (1999)zbMATHCrossRefGoogle Scholar
  19. 19.
    Smith, B.: Reducing symmetry in a combinatorial design problem, Research Report 2001.01. Technical report, University of Leeds (2001)Google Scholar
  20. 20.
    Son, T.C., Baral, C., McIlraith, S.: Planning with different forms of domain-dependent control knowledge - an answer set programming approach. In: Eiter, T., Faber, W., Truszczyński, M. (eds.) LPNMR 2001. LNCS (LNAI), vol. 2173, pp. 226–239. Springer, Heidelberg (2001)Google Scholar
  21. 21.
    Subrahmanian, V.S., Zaniolo, C.: Relating stable models and ai planning domain. In: Proc. ICLP 1995 (1995)Google Scholar
  22. 22.
    Van Beek, P., Chen, X.: Cplan: a constraint programming approach to planning. In: Proc. AAAI 1999 (1999)Google Scholar
  23. 23.
    Wilkins, D., desJardins, M.: A call for knowledge-based planning. AI Magazine 22(1) (2001)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2004

Authors and Affiliations

  • Xiumei Jia
    • 1
  • Jia-Huai You
    • 1
  • Li Yan Yuan
    • 1
  1. 1.Department of Computing ScienceUniversity of AlbertaEdmontonCanada

Personalised recommendations