Generalised Kernel Sets for Inverse Entailment

  • Oliver Ray
  • Krysia Broda
  • Alessandra Russo
Part of the Lecture Notes in Computer Science book series (LNCS, volume 3132)


The task of inverting logical entailment is of central importance to the disciplines of Abductive and Inductive Logic Programming (ALP & ILP). Bottom Generalisation (BG) is a widely applied approach for Inverse Entailment (IE), but is limited to deriving single clauses from a hypothesis space restricted by Plotkin’s notion of C-derivation. Moreover, known practical applications of BG are confined to Horn clause logic. Recently, a hybrid ALP-ILP proof procedure, called HAIL, was shown to generalise existing BG techniques by deriving multiple clauses in response to a single example, and constructing hypotheses outside the semantics of BG. The HAIL proof procedure is based on a new semantics, called Kernel Set Subsumption (KSS), which was shown to be a sound generalisation of BG. But so far KSS is defined only for Horn clauses. This paper extends the semantics of KSS from Horn clause logic to general clausal logic, where it is shown to remain a sound extension of BG. A generalisation of the C-derivation, called a K*-derivation, is introduced and shown to provide a sound and complete characterisation of KSS. Finally, the K*-derivation is used to provide a systematic comparison of existing proof procedures based on IE.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Aliseda, A.: Seeking Explanations: Abduction in Logic, Philosophy of Science and Artifical Intelligence. PhD thesis, Institute for Logic, Language and Computation (ILLC), University of Amsterdam (1997)Google Scholar
  2. 2.
    Chang, C., Lee, R.C.: Symbolic Logic and Mechanical Theorem Proving. Academic Press, London (1973)zbMATHGoogle Scholar
  3. 3.
    Inoue, K.: Induction, Abduction, and Consequence-Finding. In: Rouveirol, C., Sebag, M. (eds.) ILP 2001. LNCS (LNAI), vol. 2157, pp. 65–79. Springer, Heidelberg (2001)CrossRefGoogle Scholar
  4. 4.
    Kakas, A.C., Kowalski, R.A., Toni, F.: Abductive Logic Programming. Journal of Logic and Computation 2(6), 719–770 (1992)zbMATHCrossRefMathSciNetGoogle Scholar
  5. 5.
    Kakas, A.C., Mancarella, P.: Database Updates through Abduction. In: 16th International Conference on Very Large Databases (VLDB), pp. 650–661. Morgan Kaufmann, San Francisco (1990)Google Scholar
  6. 6.
    Muggleton, S.H.: Inverse Entailment and Progol. New Generation Computing, Special issue on Inductive Logic Programming 13(3-4), 245–286 (1995)Google Scholar
  7. 7.
    Muggleton, S.H., Bryant, C.H.: Theory Completion Using Inverse Entailment. In: Cussens, J., Frisch, A.M. (eds.) ILP 2000. LNCS (LNAI), vol. 1866, pp. 130–146. Springer, Heidelberg (2000)CrossRefGoogle Scholar
  8. 8.
    Muggleton, S.H., De Raedt, L.: Inductive Logic Programming: Theory andMethods. Journal of Logic Programming 19,20, 629–679 (1994)CrossRefGoogle Scholar
  9. 9.
    Nienhuys-Cheng, S.H., de Wolf, R.: Foundations of Inductive Logic Programming. In: Nienhuys-Cheng, S.-H., de Wolf, R. (eds.) Foundations of Inductive Logic Programming. LNCS, vol. 1228, Springer, Heidelberg (1997)Google Scholar
  10. 10.
    Plotkin, G.D.: Automatic Methods of Inductive Inference. PhD thesis, Edinburgh University (1971)Google Scholar
  11. 11.
    Ray, O.: HAIL: Hybrid Abductive-Inductive Learning. Technical Report 2003/6, Department of Computing, Imperial College London (2003)Google Scholar
  12. 12.
    Ray, O., Broda, K., Russo, A.: Hybrid Abductive Inductive Learning: a Generalisation of Progol. In: Horváth, T., Yamamoto, A. (eds.) ILP 2003. LNCS (LNAI), vol. 2835, pp. 311–328. Springer, Heidelberg (2003)CrossRefGoogle Scholar
  13. 13.
    Stickel, M.E.: A Prolog technology theorem prover: Implementation by an extended Prolog compiler. Journal of Automated Reasoning 4(4), 353–380 (1988)zbMATHCrossRefMathSciNetGoogle Scholar
  14. 14.
    Yamamoto, A.: Which Hypotheses Can Be Found with Inverse Entailment? In: Džeroski, S., Lavrač, N. (eds.) ILP 1997. LNCS, vol. 1297, pp. 296–308. Springer, Heidelberg (1997)Google Scholar
  15. 15.
    Yamamoto, A.: An Inference Method for the Complete Inverse of Relative Subsumption. New Generation Computing 17(1), 99–117 (1999)CrossRefGoogle Scholar
  16. 16.
    Yamamoto, A., Fronhöfer, B.: Hypothesis Finding via Residue Hypotheses with the Resolution Principle. In: Arimura, H., Sharma, A.K., Jain, S. (eds.) ALT 2000. LNCS (LNAI), vol. 1968, pp. 156–165. Springer, Heidelberg (2000)CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2004

Authors and Affiliations

  • Oliver Ray
    • 1
  • Krysia Broda
    • 1
  • Alessandra Russo
    • 1
  1. 1.Department of ComputingImperial College LondonLondon

Personalised recommendations