Improved Email Classification through Enriched Feature Space

  • Yunming Ye
  • Fanyuan Ma
  • Hongqiang Rong
  • Joshua Zhexue Huang
Part of the Lecture Notes in Computer Science book series (LNCS, volume 3129)


This paper presents a novel feature space enriching (FSE) technique to address the problem of sparse and noisy feature space in email classification. The (FSE) technique employs two semantic knowledge bases to enrich the original sparse feature space, which results in more semantic-richer features. From the enriched feature space, the classification algorithms can learn improved classifiers. Naive Bayes and support vector machine are selected as the classification algorithms. Experiments on an enterprise email dataset have shown that the FSE technique is effective for improving the email classification performance.


Email Classification Feature Space Enriching Semantic Knowledge Base Text Categorization 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Cohen, W.: Learning rules that classify e-mail. In: Proc. of the 1996 AAAI Spring Symposium on Machine Learning and Information Access (1996)Google Scholar
  2. 2.
    Crawford, E., McCreath, E.: Iems: the intelligent email sorter. In: Proc. of the 19th International Conference on Machine Learning (2002)Google Scholar
  3. 3.
    Provost, J.: Naive-bayes vs. rule-learning in classification of email. The University of Texas at Austin, Artificial Intelligence Lab, Technical Report (1999) Google Scholar
  4. 4.
    Rennie, J.D.: ifile: An application of machine learning to e-mail filtering. In: Proc. of KDD-2000 Text Mining Workshop (2000)Google Scholar
  5. 5.
    Diao, Y., Lu, H., Wu, D.: A comparative study of classification-based personal e-mail filtering. In: Proc. of the PAKDD 2000 (2000)Google Scholar
  6. 6.
    Segal, R., Kephart, J.O.: Mailcat: An intelligent assistant for organizing e-mail. In: Proc. of the Third International Conference on Autonomous Agents (1999)Google Scholar
  7. 7.
    Segal, R., Kephart, J.O.: Incremental learning in swiftfile. In: Proc. of the 17th International Conference on Machine Learning (2000)Google Scholar
  8. 8.
    Brutlag, J., Meek, C.: Challenges of the email domain for text classification. In: Proc. of the 17th International Conference on Machine Learning (2000)Google Scholar
  9. 9.
    Baeza-Yates, R.: Ribeiro-Neto: Modern Information Retrieval. ACM Press Series/Addison Wesley, New York (1999)Google Scholar
  10. 10.
    Miller, G.: Wordnet: a lexical database for english. Communication of ACM 38, 39–41 (1995)CrossRefGoogle Scholar
  11. 11.
    Dong, Z.: Bigger context and better understanding - expectation on future mt technology. In: Proc. of International Conference on Machine Translation and Computer Language Information Processing (1999)Google Scholar
  12. 12.
    Gelbukh, A., Sidorov, G., Guzman-Arenas, A.: Use of a weighted topic hierarchy for document classification. In: Matoušek, V., Mautner, P., Ocelíková, J., Sojka, P. (eds.) TSD 1999. LNCS (LNAI), vol. 1692, pp. 130–135. Springer, Heidelberg (1999)CrossRefGoogle Scholar
  13. 13.
    Yang, Y., Pedersen, J.O.: A comparative study on feature selection in text categorization. In: Proc. of the 14th Intl. Conference on Machine Learning (1997)Google Scholar
  14. 14.
    Lewis, D.: Naive (bayes) at forty: The independence assumption in information retrieval. In: Proc. of the ECML 1998 (1998)Google Scholar
  15. 15.
    Vapnik, V.N.: Statistical Learning Theory. John Wiley and Sons Inc, Chichester (1998)zbMATHGoogle Scholar
  16. 16.
    Platt, J., Cristianini, N., Shawe, J.: Large margin dags for multiclass classification. In: Advances in Neural Information Processing Systems (2000)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2004

Authors and Affiliations

  • Yunming Ye
    • 1
  • Fanyuan Ma
    • 1
  • Hongqiang Rong
    • 2
  • Joshua Zhexue Huang
    • 2
  1. 1.Department of Computer Science and EngineeringShanghai Jiao Tong UniversityShanghaiChina
  2. 2.E-Business Technology InstituteThe University of Hong KongHong KongChina

Personalised recommendations