In this chapter, maximum likelihood estimation of the coefficients of a VARMA model is considered. Before we can proceed to the actual estimation, a unique set of parameters must be specified. In this context, the problem of nonuniqueness of a VARMA representation becomes important. This identification problem, that is, the problem of identifying a unique structure among many equivalent ones, is treated in Section 12.1. In Section 12.2, the Gaussian likelihood function of a VARMA model is considered. A numerical algorithm for maximizing it and, thus, for computing the actual estimates is discussed in Section 12.3. The asymptotic properties of the ML estimators are the subject of Section 12.4. Forecasting with estimated processes and impulse response analysis are dealt with in Sections 12.5 and 12.6, respectively.


Order Partial Derivative Likelihood Function Order Inverse Direction Matrix Impulse Response Analysis 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Copyright information

© Springer-Verlag Berlin Heidelberg 2005

Authors and Affiliations

  • Helmut Lütkepohl
    • 1
  1. 1.Department of EconomicsEuropean University InstituteFirenzeItaly

Personalised recommendations