Shock Waves pp 621-626 | Cite as

Thermal decomposition of haloethanols: single pulse shock tube and ab initio studies

  • B. Rajakumar
  • K. P. J. Reddy
  • E. Arunan


This paper reports single pulse shock tube and ab initio studies on thermal decomposition of 2-fluoro and 2-chloroethanol at T=1000–1200 K. Both molecules have HX (X = F/Cl) and H2O molecular elimination channels. The CH3CHO formed by HX elimination is chemically active and undergoes secondary decomposition resulting in the formation of CH4, C2H6, and C2H4. A detailed kinetic simulation indicates that the formation of C2H4 could not be quantitatively explained as arising exclusively from secondary CH3CHO decomposition. Contributions from primary radical processes need to be considered to explain C2H4 quantitatively. Ab initio calculations on HX and H2O elimination reactions from the haloethanols at HF, MP2, and DFT levels with various basis sets up to 6/311++G**are reported. It is pointed out that due to strong correlations between A and Eα, comparison of these two parameters between experimental and theoretical results could be misleading.


Transition State Theory Ball Valve Elimination Reaction Transition State Theory Ethyl Chloride 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    T. Kelly, M. Manning, A. Bonard, J. Wenger, J. Treacy, H. Sidebottom: ‘Transport and Chemical Transformation in the Troposphere’. In: Proceedings of EUROTRAC Symposium, 6th, (Garmisch-Partenkirchen, Germany, 2000) pp. 410–413Google Scholar
  2. 2.
    B. Rajakumar, K.P.J. Reddy, E. Arunan: J. Phys. Chem. 107, 9782 (2003)Google Scholar
  3. 3.
    J.L. Toto, G.O. Pritchard, B. Kirtman: J. Phys. Chem. 98, 8359 (1994).CrossRefGoogle Scholar
  4. 4.
    W. Tsang: J. Chem. Phys. 41, 2487 (1964).CrossRefADSGoogle Scholar
  5. 5.
    K. Dees K, D.W. Setser: J. Chem. Phys. 49, 1193 (1968).CrossRefADSGoogle Scholar
  6. 6.
    B. Rajakumar, E. Arunan: Phys. Chem. Chem. Phys. 5, 3897 (2003).CrossRefGoogle Scholar
  7. 7.
    B. Rajakumar, K.P.J. Reddy, E. Arunan: J. Phys. Chem. A. 106, 8366 (2002).CrossRefGoogle Scholar
  8. 8.
    B. Rajakumar, D. Anandaraj, K.P.J. Reddy, E. Arunan: J. Ind. Inst. Sei. 82, 37 (2002).Google Scholar
  9. 9.
    M.J. Frisch et al: Gaussian 98, Revision Al 1.3, (Gaussian Inc. Pittsburg 1998)Google Scholar
  10. 10.
    J. Park, R.S. Zhu, M.C. Lin: J. Chem. Phys. 117, 3224 (2002).ADSGoogle Scholar
  11. 11.
    A. Lifshitz, H. Ben-Hamau: J. Phys. Chem. 87, 1782 (1983).CrossRefGoogle Scholar

Copyright information

© Tsinghua University Press and Springer-Verlag Berlin Heidelberg 2005

Authors and Affiliations

  • B. Rajakumar
    • 1
  • K. P. J. Reddy
    • 2
  • E. Arunan
    • 1
  1. 1.Department of Inorganic and Physical ChemistryIndian Institute of ScienceBangaloreINDIA
  2. 2.Department of Aerospace EngineeringIndian Institute of ScienceBangaloreINDIA

Personalised recommendations