TeMP: A Temporal Monodic Prover

  • Ullrich Hustadt
  • Boris Konev
  • Alexandre Riazanov
  • Andrei Voronkov
Part of the Lecture Notes in Computer Science book series (LNCS, volume 3097)


First-Order Temporal Logic, FOTL, is an extension of classical first-order logic by temporal operators for a discrete linear model of time (isomorphic to ℕ, that is, the most commonly used model of time). Formulae of this logic are interpreted over structures that associate with each element n of ℕ, representing a moment in time, a first-order structure (D n ,I n ) with its own non-empty domain D n . In this paper we make the expanding domain assumption, that is, D n D m if n<m. The set of valid formulae of this logic is not recursively enumerable. However, the set of valid monodic formulae is known to be finitely axiomatisable [13].


Temporal Logic Abstract State Machine Step Resolution Empty Clause Clausal Form 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Artale, A., Franconi, E., Wolter, F., Zakharyaschev, M.: A temporal description logic for reasoning over conceptual schemas and queries. In: Flesca, S., Greco, S., Leone, N., Ianni, G. (eds.) JELIA 2002. LNCS (LNAI), vol. 2424, pp. 98–110. Springer, Heidelberg (2002)CrossRefGoogle Scholar
  2. 2.
    Bachmair, L., Ganzinger, H.: Resolution theorem proving. In: Robinson, A., Voronkov, A. (eds.) Handbook of Automated Reasoning, pp. 19–99. Elsevier, Amsterdam (2001)CrossRefGoogle Scholar
  3. 3.
    Fisher, M., Dixon, C., Peim, M.: Clausal temporal resolution. ACM Transactions on Computational Logic 2(1), 12–56 (2001)CrossRefMathSciNetGoogle Scholar
  4. 4.
    Fisher, M., Lisitsa, A.: Temporal verification of monodic abstract state machines. Technical Report ULCS-03-011, Department of Computer Science, University of Liverpool (2003)Google Scholar
  5. 5.
    Gabelaia, D., Kontchakov, R., Kurucz, A., Wolter, F., Zakharyaschev, M.: On the computational complexity of spatio-temporal logics. In: Proc. FLAIRS 2003, pp. 460–464. AAAI Press, Menlo Park (2003)Google Scholar
  6. 6.
    Hustadt, U., Konev, B.: TRP++ 2.0: A temporal resolution prover. In: Baader, F. (ed.) CADE 2003. LNCS(LNAI), vol. 2741, pp. 274–278. Springer, Heidelberg (2003)CrossRefGoogle Scholar
  7. 7.
    Hustadt, U., Schmidt, R.A.: Scientific benchmarking with temporal logic decision procedures. In: Proc. KR 2002, pp. 533–544. Morgan Kaufmann, San Francisco (2002)Google Scholar
  8. 8.
    Janssen, G.: Logics for Digital Circuit Verification: Theory, Algorithms, and Applications. PhD thesis, Eindhoven University of Technology, The Netherlands (1999)Google Scholar
  9. 9.
    Konev, B., Degtyarev, A., Dixon, C., Fisher, M., Hustadt, U.: Mechanising first-order temporal resolution. Technical Report ULCS-03-023, University of Liverpool, Department of Computer Science (2003),
  10. 10.
    Kontchakov, R., Lutz, C., Wolter, F., Zakharyaschev, M.: Temporalising tableaux. Studia Logica 76(1), 91–134 (2004)zbMATHCrossRefMathSciNetGoogle Scholar
  11. 11.
    Riazanov, A., Voronkov, A.: The design and implementation of Vampire. AI Communications 15(2-3), 91–110 (2002)zbMATHGoogle Scholar
  12. 12.
    Schwendimann, S.: Aspects of Computational Logic. PhD thesis, Universität Bern, Switzerland (1998)Google Scholar
  13. 13.
    Wolter, F., Zakharyaschev, M.: Axiomatizing the monodic fragment of first-order temporal logic. Annals of Pure and Applied logic 118, 133–145 (2002)zbMATHCrossRefMathSciNetGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2004

Authors and Affiliations

  • Ullrich Hustadt
    • 1
  • Boris Konev
    • 1
  • Alexandre Riazanov
    • 2
  • Andrei Voronkov
    • 2
  1. 1.Department of Computer ScienceUniversity of LiverpoolUK
  2. 2.Department of Computer ScienceUniversity of ManchesterUK

Personalised recommendations