Skip to main content

On the Use of Weber Polynomials in Elliptic Curve Cryptography

  • Conference paper
Public Key Infrastructure (EuroPKI 2004)

Part of the book series: Lecture Notes in Computer Science ((LNCS,volume 3093))

Included in the following conference series:

Abstract

In many cryptographic applications it is necessary to generate elliptic curves (ECs) with certain security properties. These curves are commonly constructed using the Complex Multiplication method which typically uses the roots of Hilbert or Weber polynomials. The former generate the EC directly, but have high computational demands, while the latter are faster to construct but they do not lead, directly, to the desired EC. In this paper we present in a simple and unifying manner a complete set of transformations of the roots of a Weber polynomial to the roots of its corresponding Hilbert polynomial for all discriminant values on which they are defined. Moreover, we prove a theoretical estimate of the precision required for the computation of Weber polynomials. Finally, we experimentally assess the computational efficiency of the Weber polynomials along with their precision requirements for various discriminant values and compare the results with the theoretical estimates. Our experimental results may be used as a guide for the selection of the most efficient curves in applications residing in resource limited devices such as smart cards that support secure and efficient Public Key Infrastructure (PKI) services.

This work was partially supported by the Action IRAKLITOS (Fellowships for Research in the University of Patras) with matching funds from EC and the Greek Ministry of Education.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Atkin, A.O.L., Morain, F.: Elliptic curves and primality proving. Mathematics of Computation 61, 29–67 (1993)

    Article  MATH  MathSciNet  Google Scholar 

  2. Baier, H., Buchmann, J.: Efficient construction of cryptographically strong elliptic curves. In: Roy, B., Okamoto, E. (eds.) INDOCRYPT 2000. LNCS, vol. 1977, pp. 191–202. Springer, Heidelberg (2000)

    Google Scholar 

  3. Baier, H.: Efficient Algorithms for Generating Elliptic Curves over Finite Fields Suitable for Use in Cryptography, PhD Thesis, Dept. of Computer Science, Technical Univ. of Darmstadt (May 2002)

    Google Scholar 

  4. Blake, I., Seroussi, G., Smart, N.: Elliptic curves in cryptography. London Mathematical Society Lecture Note Series, vol. 265. Cambridge University Press, Cambridge (1999)

    MATH  Google Scholar 

  5. Enge, A., Morain, F.: Comparing invariants for class fields of imaginary quadratic fields. In: Fieker, C., Kohel, D.R. (eds.) ANTS 2002. LNCS, vol. 2369, pp. 252–266. Springer, Heidelberg (2002)

    Chapter  Google Scholar 

  6. Enge, A., Schertz, R.: Constructing Elliptic Curves from Modular Curves of Positive Genus (March 2003) (preprint)

    Google Scholar 

  7. GNU multiple precision library, edition 3.1.1 (September 2000), Available at: http://www.swox.com/gmp

  8. Gura, N., Eberle, H., Shantz, S.C.: Generic Implementations of Elliptic Curve Cryptography using Partial Reduction. In: Proc. 9th ACM Conf. on Computer and Communications Security – CCS 2002, pp. 108–116 (2002)

    Google Scholar 

  9. IEEE P1363/D13. Standard Specifications for Public-Key Cryptography, ballot draft (1999), http://grouper.ieee.org/groups/1363/tradPK/draft.html

  10. Kaltofen, E., Valente, T., Yui, N.: An Improved Las Vegas Primality Test. In: Proc. ACM-SIGSAM 1989 International Symposium on Symbolic and Algebraic Computation, pp. 26–33 (1989)

    Google Scholar 

  11. Kaltofen, E., Yui, N.: Explicit construction of the Hilbert class fields of imaginary quadratic fields by integer lattice reduction. Research Report 89-13, Renseelaer Polytechnic Institute (May 1989)

    Google Scholar 

  12. Konstantinou, E., Stamatiou, Y.C., Zaroliagis, C.: On the Efficient Generation of Elliptic Curves over Prime Fields. In: Kaliski Jr., B.S., Koç, Ç.K., Paar, C. (eds.) CHES 2002. LNCS, vol. 2523, pp. 333–348. Springer, Heidelberg (2002)

    Chapter  Google Scholar 

  13. Lay, G.J., Zimmer, H.: Constructing Elliptic Curves with Given Group Order over Large Finite Fields. In: Huang, M.-D.A., Adleman, L.M. (eds.) ANTS 1994. LNCS, vol. 877, pp. 250–263. Springer, Heidelberg (1994)

    Google Scholar 

  14. LiDIA. A library for computational number theory, Technical University of Darmstadt, Available from http://www.informatik.tu-darmstadt.de/TI/LiDIA/Welcome.html

  15. Morain, F.: Computing the cardinality of CM elliptic curves using torsion points (October 2002) (preprint)

    Google Scholar 

  16. Müller, V., Paulus, S.: On the Generation of Cryptographically Strong Elliptic Curves (1997) (preprint)

    Google Scholar 

  17. Niven, I., Zuckerman, H.S., Montgomery, H.L.: An Introduction to the Theory of Numbers, 5th edn. John Wiley & Sons, Chichester (1991)

    Google Scholar 

  18. Savaş, E., Schmidt, T.A., Koç, Ç.K.: Generating Elliptic Curves of Prime Order. In: Koç, Ç.K., Naccache, D., Paar, C. (eds.) CHES 2001. LNCS, vol. 2162, pp. 145–161. Springer, Heidelberg (2001)

    Google Scholar 

  19. Schertz, R.: Weber’s class invariants revisited. J. Théor. Nombres Bordeaux 14(1) (2002)

    Google Scholar 

  20. Silverman, J.H.: The Arithmetic of Elliptic Curves. GTM 106, Springer (1986)

    Google Scholar 

  21. Spallek, A.-M.: Konstruktion einer elliptischen Kurve über einem endli-chen Körper zu gegebener Punktegruppe, Master Thesis, Universitäat GH Essen (1992)

    Google Scholar 

  22. Valente, T.: A distributed approach to proving large numbers prime, Rensselaer Polytechnic Institute Troy, New York, PhD Thesis (August 1992)

    Google Scholar 

  23. Weng, A.: Konstruktion kryptographisch geeigneter Kurven mit komplexer Multiplikation, PhD thesis, Institut für Experimentelle Mathematik, Universität GH Essen (2001)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2004 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Konstantinou, E., Stamatiou, Y.C., Zaroliagis, C. (2004). On the Use of Weber Polynomials in Elliptic Curve Cryptography. In: Katsikas, S.K., Gritzalis, S., López, J. (eds) Public Key Infrastructure. EuroPKI 2004. Lecture Notes in Computer Science, vol 3093. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-25980-0_28

Download citation

  • DOI: https://doi.org/10.1007/978-3-540-25980-0_28

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-22216-3

  • Online ISBN: 978-3-540-25980-0

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics