Skip to main content

Robust Encoding of Local Ordinal Measures: A General Framework of Iris Recognition

  • Conference paper
Biometric Authentication (BioAW 2004)

Part of the book series: Lecture Notes in Computer Science ((LNCS,volume 3087))

Included in the following conference series:

Abstract

The randomness of iris pattern makes it one of the most reliable biometric traits. On the other hand, the complex iris image structure and various sources of intra-class variations result in the difficulty of iris representation. Although diverse iris recognition methods have been proposed, the fundamentals of iris recognition have not a unified answer. As a breakthrough of this problem, we found that several accurate iris recognition algorithms share a same idea — local ordinal encoding, which is the representation well-suited for iris recognition. After further analysis and summarization, a general framework of iris recognition is formulated in this paper. This work discovered the secret of iris recognition. With the guidance of this framework, a novel iris recognition method based on robust estimating the direction of image gradient vector is developed. Extensive experimental results demonstrate our idea.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Jain, A.K., Bolle, R.M., Pankanti, S. (eds.): Biometrics: Personal Identification in Net-worked Society. Kluwer, Norwell (1999)

    Google Scholar 

  2. Zhang, D. (ed.): Automated Biometrics: Technologies and Systems. Kluwer, Norwell (2000)

    Google Scholar 

  3. Mansfield, T., Kelly, G., Chandler, D., Kane, J.: Biometric Product Testing Final Report, issue 1.0, National Physical Laboratory of UK (2001)

    Google Scholar 

  4. http://www.iridiantech.com

  5. Daugman, J.: High Confidence Visual Recognition of Persons by a Test of Statistical Independence. IEEE Trans. PAMI 15(11), 1148–1161 (1993)

    Google Scholar 

  6. Daugman, J.: Recognizing persons by their iris patterns. In: [1], pp. 103–121

    Google Scholar 

  7. Daugman, J.: Statistical Richness of Visual Phase Information: Update on Recognizing Persons by Iris Patterns. IJCV 45(1), 25–38 (2001)

    Article  MATH  Google Scholar 

  8. Wildes, R.P., Asmuth, J.C., et al.: A Machine-vision System for Iris Recognition. Machine Vision and Applications 9, 1–8 (1996)

    Article  Google Scholar 

  9. Boles, W.W., Boashash, B.: A Human Identification Technique Using Images of the Iris and Wavelet Transform. IEEE Trans. on Signal Processing 46(4), 1185–1188 (1998)

    Article  Google Scholar 

  10. Zhu, Y., Tan, T., Wang, Y.: Biometric Personal Identification Based on Iris Patterns, pp. 805–808. ICPR (2000)

    Google Scholar 

  11. Ma, L., Wang, Y., Tan, T.: Iris Recognition Based on Multichannel Gabor Filtering. In: ACCV, pp. 279–283 (2002)

    Google Scholar 

  12. Ma, L., Wang, Y., Tan, T.: Iris Recognition Using Circular Symmetric Filters. ICPR, 414–417 (2002)

    Google Scholar 

  13. Ma, L., Tan, T., Wang, Y., Zhang, D.: Personal identification based on iris texture analysis. IEEE Trans. PAMI 25(12), 1519–1533 (2003)

    Google Scholar 

  14. Ma, L., Tan, T., Wang, Y., Zhang, D.: Efficient Iris Recognition by Characterizing Key Local Variations. IEEE Trans. Image Processing (Accepted)

    Google Scholar 

  15. Ma, L., Tan, T., Zhang, D., Wang, Y.: Local Intensity Variation Analysis for Iris Recognition. Pattern Recognition (Accepted)

    Google Scholar 

  16. Lim, S., Lee, K., et al.: Efficient Iris Recognition through Improvement of Feature Vector and Classifier. ETRI Journal 23(2), 61–70 (2001)

    Article  MathSciNet  Google Scholar 

  17. Sanchez-Reillo, R., Sanchez-Avila, C.: Iris Recognition With Low Template Size. In: Bigun, J., Smeraldi, F. (eds.) AVBPA 2001. LNCS, vol. 2091, pp. 324–329. Springer, Heidelberg (2001)

    Chapter  Google Scholar 

  18. Sanchez-Avila, C., Sanchez-Reillo, R., et al.: Iris-based Biometric Recognition using Dyadic Wavelet Transform. IEEE Aerospace and Electronic Systems Magazine, 3–6 (2002.8)

    Google Scholar 

  19. Tisse, C., Martin, L., Torres, L., Robert, M.: Person Identification Technique Using Human Iris Recognition. In: Proc. of Vision Interface, pp. 294–299 (2002)

    Google Scholar 

  20. Park, C., Lee, J., Smith, M., Park, K.: Iris-Based Personal Authentication Using a Normalized Directional Energy Feature. In: AVBPA 2003, pp. 224–232 (2003)

    Google Scholar 

  21. Kumar, B., Xie, C., Thornton, J.: Iris Verification Using Correlation Filters. In: AVBPA 2003, pp. 697–705 (2003)

    Google Scholar 

  22. Bae, K., Noh, S., Kim, J.: Iris Feature Extraction Using Independent Component Analysis. In: AVBPA 2003, pp. 838–844 (2003)

    Google Scholar 

  23. Noh, S., Bae, K., Kim, J.: A Novel Method to Extract Features for Iris Recognition System. In: AVBPA, pp. 862–868 (2003)

    Google Scholar 

  24. Sinha, P.: Qualitative representations for recognition. In: Bülthoff, H.H., Lee, S.-W., Poggio, T.A., Wallraven, C. (eds.) BMCV 2002. LNCS, vol. 2525, pp. 249–262. Springer, Heidelberg (2002)

    Chapter  Google Scholar 

  25. Papageorgiou, C., Oren, M., Poggio, T.: A general framework for object detection. In: ICCV, pp. 555–562 (1998)

    Google Scholar 

  26. Bhat, D., Nayar, S.: Ordinal measures for image correspondence. IEEE Trans. on PAMI 20(4), 415–423 (1998)

    Google Scholar 

  27. Lipson, P., Grimson, E., Sinha, P.: Configuration based scene classification and image indexing CVPR, pp. 1007–1013 (1997)

    Google Scholar 

  28. Sadr, J., Mukherjee, S., Thoresz, K., Sinha, P.: The Fidelity of Local Ordinal Encoding. In: Dietterich, T., Becker, S., Ghahramani, Z. (eds.) Advances in Neural Information Processing Systems 14, MIT Press, Cambridge (2002)

    Google Scholar 

  29. Hampel, F.R., Ronchetti, E.M., Rousseeuw, P.J., Stahel, W.A. (eds.): Robust Statistics: The Approach Based on Influence Functions. Wiley, New York (1986)

    MATH  Google Scholar 

  30. Meer, P., Mintz, D., Rosenfeld, A., Kim, D.Y.: Robust regression methods for computer vision-A review. IJCV 6(1), 59–70 (1991)

    Article  Google Scholar 

  31. Stewart, C.V.: Robust parameter estimation in computer vision. SIAM Review 41(3), 513–537 (1999)

    Article  MATH  MathSciNet  Google Scholar 

  32. Daugman, J.: Two-dimensional spectral analysis of cortical receptive field profile. Vision Research 20, 847–856 (1980)

    Article  Google Scholar 

  33. Daugman, J.: Uncertainty relation for resolution in space, spatial frequency and orientation optimized by two-dimensional visual cortical filters. J. Opt. Soc. Am. 2(7), 1160–1169 (1985)

    Article  Google Scholar 

  34. Daugman, J.: Complete discrete 2D Gabor transforms by neural networks for image analy-sis and compression. IEEE Transactions on Acoustics, Speech and Signal Processing 36(7), 1169–1179 (1997)

    Article  Google Scholar 

  35. Perona, P.: Orientation diffusion. IEEE Trans. Image Processing 7(3), 457–467 (1998)

    Article  Google Scholar 

  36. Tang, B., Sapiro, G., Caselles, V.: Diffusion of general data on non-flat manifolds via harmonic maps theory: The direction diffusion case. IJCV 36(2), 149–161 (2000)

    Article  Google Scholar 

  37. Trahanias, P.E., Venetsanopoueos, A.N.: Vector Directional Filters—A New Class of Multichannel Image Processing Filters. IEEE Trans. Image Processing 2(4), 528–534 (1993)

    Article  Google Scholar 

  38. CASIA Iris Image Database, Chinese Academy of sciences, http://www.sinobiometrics.com/casiairis.htm

  39. Balas, B.J., Sinha, P.: Dissociated Dipoles: Image Representation via Non-local Comparisons, CBCL Paper #229/AI Memo #2003-018, Massachusetts Institute of Technology, Cambridge, MA (2003)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2004 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Sun, Z., Tan, T., Wang, Y. (2004). Robust Encoding of Local Ordinal Measures: A General Framework of Iris Recognition. In: Maltoni, D., Jain, A.K. (eds) Biometric Authentication. BioAW 2004. Lecture Notes in Computer Science, vol 3087. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-25976-3_25

Download citation

  • DOI: https://doi.org/10.1007/978-3-540-25976-3_25

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-22499-0

  • Online ISBN: 978-3-540-25976-3

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics