Modeling the Molecular Network Controlling Adhesion Between Human Endothelial Cells: Inference and Simulation Using Constraint Logic Programming

  • Eric Fanchon
  • Fabien Corblin
  • Laurent Trilling
  • Bastien Hermant
  • Danielle Gulino
Part of the Lecture Notes in Computer Science book series (LNCS, volume 3082)


Cell-cell adhesion plays a critical role in the formation of tissues and organs. Adhesion between endothelial cells is also involved in the control of leukocyte migration across the endothelium of blood vessels. The most important players in this process are probably identified and the overall organization of the biochemical network can be drawn, but knowledge about connectivity is still incomplete, and the numerical values of kinetic parameters are unknown. This calls for qualitative modeling methods. Our aim in this paper is twofold: (i) to integrate in a unified model the biochemical network and the genetic circuitry. For this purpose we transform our system into a system of piecewise linear differential equations and then use Thomas theory of discrete networks. (ii) to show how constraints can be used to infer ranges of parameter values from observations and, with the same model, perform qualitative simulations.


Adherens Junction Constraint Satisfaction Problem Biochemical Network Genetic Regulatory Network Computation Tree Logic 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Bockmayr, A., Courtois, A.: Using Hybrid Concurrent Constraint Programming to Model Dynamic Biological Systems. In: Stuckey, P.J. (ed.) ICLP 2002. LNCS, vol. 2401, pp. 85–99. Springer, Heidelberg (2002)CrossRefGoogle Scholar
  2. 2.
    Chabrier, N., Fages, F.: Symbolic Model Checking of Biochemical Networks. In: Priami, C. (ed.) CMSB 2003. LNCS, vol. 2602, pp. 149–162. Springer, Heidelberg (2003)CrossRefGoogle Scholar
  3. 3.
    Cohen, J.: Approaches for simulating and modeling cell regulation: search for a unified view using constraints. Linköping Electronic Articles in Computer and Information Science 3(7) (2001)Google Scholar
  4. 4.
    Colmerauer, A.: Prolog – Constraints Inside, Manuel de Prolog, PROLOGIA, Case 919, 13288 Marseille cedex 09, France (1996)Google Scholar
  5. 5.
    Delzanno, G., Podelski, A.: Model Checking in CLP. In: Cleaveland, W.R. (ed.) TACAS 1999. LNCS, vol. 1579, pp. 223–239. Springer, Heidelberg (1999)CrossRefGoogle Scholar
  6. 6.
    Devloo, V., Hansen, P., Labbé, M.: Identification of All Steady States in Large Biological Systems by Logical Analysis. Bulletin of Mathematical Biology 65, 1025–1051 (2003)CrossRefzbMATHGoogle Scholar
  7. 7.
    Glass, L., Kauffman, S.A.: Co-operative components, spatial localization and oscillatory cellular dynamics. J. Theor. Biol. 34, 219–237 (1972)CrossRefGoogle Scholar
  8. 8.
    Glass, L., Kauffman, S.A.: The logical analysis of continuous, non-linear biochemical control networks. J. Theor. Biol. 39, 103–129 (1973)CrossRefGoogle Scholar
  9. 9.
    Gulino, D., Delachanal, E., Concord, E., Genoux, Y., Morand, B., Valiron, M.O., Sulpice, E., Scaife, R., Alemany, M., Vernet, T.: Alteration of Endothelial Cell Monolayer Integrity Triggers Resynthesis of Vascular Endothelium Cadherin. The Journal of Biological Chemistry 273, 29786–29793 (1998)CrossRefGoogle Scholar
  10. 10.
    Hermant, B., Bibert, S., Concord, E., Dublet, B., Weidenhaupt, M., Vernet, T., Gulino-Debrac, D.: Identification of Proteases Involved in the Proteolysis of Vascular Endothelium Cadherin during Neutrophil Transmigration. The Journal of Biological Chemistry 278, 14002–14012 (2003)CrossRefGoogle Scholar
  11. 11.
    Hickey, T.J., Wittenberg, D.K.: Rigorous Modeling of Hybrid Systems using Interval Arithmetic Constraints. In: Technical Report CS-03-241, Computer Science Departement, Brandeis University (2003)Google Scholar
  12. 12.
    Hordijk, P.L., Anthony, E., Mul, F.P., Rientsma, R., Oomen, L.C., Roos, D.: Vascular-Endothelial-Cadherin Modulates Endothelial Monolayer Permeability. J. Cell Sci. 112, 1915–1923 (1999)Google Scholar
  13. 13.
    de Jong, H., Gouzé, J.-L., Hernandez, C., Page, M., Sari, T., Geiselmann, J.: Hybrid modeling and simulation of genetic regulatory networks: A qualitative approach. In: Maler, O., Pnueli, A. (eds.) HSCC 2003. LNCS, vol. 2623, pp. 267–282. Springer, Heidelberg (2003)CrossRefGoogle Scholar
  14. 14.
    Lampugnani, M.G., Corada, M., Caveda, L., Breviario, F., Ayalon, O., Geiger, B., Dejana, E.: The molecular organization of endothelial cell to cell junctions: differential association of plakoglobin, β-catenin, and α-catenin with vascular endothelial cadherin (VE-cadherin). J. Cell Biol. 129, 203–217 (1995)CrossRefGoogle Scholar
  15. 15.
    Lampugnani, M.G., Resnati, M., Raiteri, M., Pigott, R., Pisacane, A., Houen, G., Ruco, L.P., Dejana, E.: A novel endothelial-specific membrane protein is a marker of cell-cell contacts. J. Cell Biol. 118, 1511–1522 (1992)CrossRefGoogle Scholar
  16. 16.
    Legrand, P., Bibert, S., Jaquinod, M., Ebel, C., Hewatt, E., Vincent, F., Vanbelle, C., Concord, E., Vernet, T., Gulino, D.: Self-assembly of the vascular endothelial cadherin ectodomain in a Ca2 + -dependent hexameric structure. Journal of Biological Chemistry 276, 3581–3588 (2001)CrossRefGoogle Scholar
  17. 17.
    Murray, J.D.: Mathematical Biology. Springer, Heidelberg (1989)CrossRefzbMATHGoogle Scholar
  18. 18.
    Peres, S., Comet, J.-P.: Contribution of Computational Tree Logic to Biological Regulatory Networks: Example from Pseudomonas Aeruginosa. In: Priami, C. (ed.) CMSB 2003. LNCS, vol. 2602, pp. 47–56. Springer, Heidelberg (2003)CrossRefGoogle Scholar
  19. 19.
    Shapiro, B.E., Levchenko, A., Mjolsness, E.: Automatic model generation for signal transduction with applications to MAPK pathway. In: Kitano, H. (ed.) Foundations of Systems Biology. MIT Press, Cambridge (2002)Google Scholar
  20. 20.
    Snoussi, E.H., Thomas, R.: Logical Identification of All Steady States: The Concept of Feedback Loop Characteristic States. Bulletin of Mathematical Biology 55, 973–991 (1993)CrossRefzbMATHGoogle Scholar
  21. 21.
    Thieffry, D., Colet, M., Thomas, R.: Formalisation of Regulatory Networks: a Logical Method and Its Automation. Math. Modelling and Sci. Computing 2, 144–151 (1993)zbMATHGoogle Scholar
  22. 22.
    Thomas, R., Kaufman, M.: Multistationarity, the Basis of Cell Differentiation and Memory. II. Logical Analysis of Regulatory Networks in Term of Feedback Circuits. Chaos 11, 180–195 (2001)zbMATHGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2005

Authors and Affiliations

  • Eric Fanchon
    • 1
  • Fabien Corblin
    • 1
    • 2
  • Laurent Trilling
    • 2
  • Bastien Hermant
    • 1
  • Danielle Gulino
    • 1
  1. 1.LCM and LIM, Institut de Biologie Structurale Jean Pierre EbelCEA-CNRS-Université Joseph FourierGrenobleFrance
  2. 2.IMAG-LSRUniversité Joseph FourierGrenobleFrance

Personalised recommendations