Advertisement

Building and Analysing an Integrative Model of HIV-1 RNA Alternative Splicing

  • A. Bockmayr
  • A. Courtois
  • D. Eveillard
  • M. Vezain
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 3082)

Abstract

We present a multi-site model describing the alternative use of the RNA splicing sites A3, A4, A5 and A7 in the human immunodeficiency virus HIV-1. Our goal is to integrate experimental data obtained on individual splicing sites into a global model of HIV-1 RNA alternative splicing. We give a qualitative validation of our model, and analyse the possible impact of variations of regulatory protein concentrations on virus multiplication.

Keywords

Splice Site Acceptor Site Virus Life Cycle Splice Regulation Hybrid Automaton 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Bockmayr, A., Courtois, A.: Using hybrid concurrent constraint programming to model dynamic biological systems. In: Stuckey, P.J. (ed.) ICLP 2002. LNCS, vol. 2401, pp. 85–99. Springer, Heidelberg (2002)CrossRefGoogle Scholar
  2. 2.
    Eveillard, D., Ropers, D., de Jong, H., Branlant, C., Bockmayr, A.: Multiscale modeling of alternative splicing regulation. In: Priami, C. (ed.) CMSB 2003. LNCS, vol. 2602, pp. 75–87. Springer, Heidelberg (2003)CrossRefGoogle Scholar
  3. 3.
    Moore, M., Query, C., Sharp, P.: Splicing of precursors to messenger RNAs by the spliceosome. In: The RNA World, Cold Spring Harbor Laboratory Press (1993)Google Scholar
  4. 4.
    Smith, C.W., Valcarcel, J.: Alternative pre-mRNA splicing: the logic of combinatorial control. Trends In Biochemical Sciences 25(8), 381–388 (2000)CrossRefGoogle Scholar
  5. 5.
    Purcell, D., Martin, M.: Alternative splicing of human immunodeficiency virus type 1 mRNA modulates viral protein expression, replication and infectivity. Journal of Virology 67(11), 6365–6378 (1993)Google Scholar
  6. 6.
    Hope, T.: The ins and outs of HIV rev. Arch. Biochem. Biophys. 365(2), 186–191 (1999)CrossRefGoogle Scholar
  7. 7.
    O’Reilly, M., McNally, M., Beemon, K.: Two strong 5’ splice sites and competing, suboptimal 3’ splice sites involved in alternative splicing of human immunodeficiency virus type 1 RNA. Virology 213, 373–385 (1995)CrossRefGoogle Scholar
  8. 8.
    Si, Z., Amendt, B.A., Stoltzfus, C.M.: Splicing efficiency of human immunodeficiency virus type 1 tat RNA is determined by both a suboptimal 3’ splice site and a 10 nucleotide exon splicing silencer element located within tat exon 2. Nucleic Acids Res. 25, 861–867 (1997)CrossRefGoogle Scholar
  9. 9.
    Swanson, A.K., Stoltzfus, C.M.: Overlapping cis sites used for splicing of HIV-1 env/nef and rev mRNAs. J. Biol. Chem. 273, 34551–34557 (1998)CrossRefGoogle Scholar
  10. 10.
    Schaal, H., Freund, M., Kammler, S., Asang, C., Caputi, M.: A bidirectional SR protein-dependent exonic splicing enhancer regulates rev, env, vpu and nef gene expression. In: Eukaryotic mRNA Processing (2003)Google Scholar
  11. 11.
    Gupta, V., Jagadeesan, R., Saraswat, V.: Computing with continuous change. Science of computer programming 30, 3–49 (1998)CrossRefzbMATHGoogle Scholar
  12. 12.
    Chabrier, N., Fages, F.: Symbolic model checking of biochemical networks. In: Priami, C. (ed.) CMSB 2003. LNCS, vol. 2602, pp. 149–162. Springer, Heidelberg (2003)CrossRefGoogle Scholar
  13. 13.
    Pongoski, J., Asai, K., Cochrane, A.: Positive and negative modulation of human immunodeficiency virus type 1 Rev function by cis and trans regulators of viral RNA splicing. J. Virol. 76, 5108–5120 (2002) CrossRefGoogle Scholar
  14. 14.
    Hammond, B.J.: Quantitative study of the control of HIV-1 gene expression. J. Theor. Biol. 163, 199–221 (1993)CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2005

Authors and Affiliations

  • A. Bockmayr
    • 1
  • A. Courtois
    • 1
  • D. Eveillard
    • 1
    • 2
  • M. Vezain
    • 1
  1. 1.LORIA, UMR 7503 (CNRS, INRIA, Universités de Nancy)Vandœuvre-lès-NancyFrance
  2. 2.Laboratoire de Maturation des ARN et Enzymologie Moléculaire, UMR 7567 CNRS-UHPVandoeuvre-lès-NancyFrance

Personalised recommendations