Black Box Checking for Biochemical Networks

  • Dragan Bošnački
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 3082)

Abstract

We propose black box checking as a framework for analyzing biochemical networks. Black box checking was originally introduced by Peled, Yannakakis and Vardi in the context of formal verification of concurrent systems as a strategy that combines model checking and testing, as two main techniques in that area. Based on the natural analogy between biochemical networks and concurrent systems we argue that black box checking can be used to design and perform experiments in a systematic manner, and also to learn about the network underlying mechanisms. We also discuss potential applications with emphasis on forward engineering of biochemical networks.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Angluin, D.: Learning Regular Sets from Queries and Counterexamples. Information and Computation 75, 87–106 (1987)CrossRefMATHGoogle Scholar
  2. 2.
    Antoniotti, M., Policriti, A., Ugel, N., Mishra, B.: Model Building and Model Checking Biochemical Processes. Cell Biochemistry and Biophysics 38, 271–286 (2003)CrossRefGoogle Scholar
  3. 3.
    Batt, G., Bergamini, D., de Jong, H., Garavel, H., Mateescu, R.: Model Checking Genetic Regulatory Networks Using GNA and CADP. In: Graf, S., Mounier, L. (eds.) SPIN 2004. LNCS, vol. 2989, pp. 158–163. Springer, Heidelberg (2004)CrossRefGoogle Scholar
  4. 4.
    Bower, J.M., Belouri, H. (eds.): Computational Modeling of Genetic and Biochemical Networks. MIT Press, Cambridge (2001)Google Scholar
  5. 5.
    Bryant, C.H., Muggleton, S.H., Oliver, S.G., Kell, D.B., Reiser, P., King, R.D.: Combining Inductive Logic Programming, Active Learning and Robotics to Discover the Function of Genes. Electronic Transactions in Artificial Intelligence 6-B1(012), 1–36 (2001)Google Scholar
  6. 6.
    Chabrier, N., Fages, F.: Symbolic Model Checking of Biochemical Networks. In: Priami, C. (ed.) CMSB 2003. LNCS, vol. 2602, pp. 149–162. Springer, Heidelberg (2003)CrossRefGoogle Scholar
  7. 7.
    Chow, T.S.: Testing Software Design Modeled by Finite State Machines. IEEE Transactions on Software Engineering SE-4(2), 178–187 (1978)CrossRefMATHGoogle Scholar
  8. 8.
    Clarke, E.M., Grumberg, O., Peled, D.A.: Model Checking. MIT Press, Cambridge (2001)CrossRefGoogle Scholar
  9. 9.
    Holzmann, G.J.: The Spin Model Checker: Primer and Reference Manual. Addison-Wesley, Reading (2003)Google Scholar
  10. 10.
    Peled, D.: Model Checking and Testing Combined. In: Baeten, J.C.M., Lenstra, J.K., Parrow, J., Woeginger, G.J. (eds.) ICALP 2003. LNCS, vol. 2719, pp. 47–63. Springer, Heidelberg (2003)CrossRefGoogle Scholar
  11. 11.
    Peled, D., Vardi, M.Y., Yannakakis, M.: Black Box Checking. Journal of Automata, Languages and Combinatorics 7(2), 225–246 (2002)MATHGoogle Scholar
  12. 12.
    Rao, C., Arkin, A.: Control Motifs for Intracellular Regulatory Networks. Annual Review of Biomedical Engineering 3, 391–419 (2001)CrossRefGoogle Scholar
  13. 13.
    Regev, A., Silverman, W., Shapiro, E.Y.: Representation and Simulation of Biochemical Processes Using the pi-Calculus Process Algebra. In: Pacific Symposium on Biocomputing, 2001, pp. 459–470 (2001)Google Scholar
  14. 14.
    Somogyi, R., Fuhrman, S., Wen, X.: Genetic Network Inference in Computational Models and Applications to Large Scale Gene Expression Data, in [4] above (2001)Google Scholar
  15. 15.
    Vasilevskii, M.P.: Failure Diagnosis of Automata. Kibernetika 4, 98–108 (1973)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2005

Authors and Affiliations

  • Dragan Bošnački
    • 1
  1. 1.Dept. of Biomedical EngineeringEindhoven University of TechnologyEindhovenThe Netherlands

Personalised recommendations