The Biochemical Abstract Machine BIOCHAM

  • Nathalie Chabrier-Rivier
  • François Fages
  • Sylvain Soliman
Part of the Lecture Notes in Computer Science book series (LNCS, volume 3082)


In this article we present the Biochemical Abstract Machine BIOCHAM and advocate its use as a formal modeling environment for networks biology. Biocham provides a precise semantics to biomolecular interaction maps. Based on this formal semantics, the Biocham system offers automated reasoning tools for querying the temporal properties of the system under all its possible behaviors. We present the main features of Biocham, provide details on a simple example of the MAPK signaling cascade and prove some results on the equivalence of models w.r.t. their temporal properties.


MAPK Cascade Inductive Logic Programming Kripke Structure System Biology Markup Language Computation Tree Logic 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Ideker, T., Galitski, T., Hood, L.: A new approach to decoding life: Systems biology. Annual Review of Genomics and Human Genetics 2, 343–372 (2001)CrossRefGoogle Scholar
  2. 2.
    Regev, A., Silverman, W., Shapiro, E.Y.: Representation and simulation of biochemical processes using the pi-calculus process algebra. In: Proceedings of the sixth Pacific Symposium of Biocomputing, pp. 459–470 (2001)Google Scholar
  3. 3.
    Nagasaki, M., Onami, S., Miyano, S., Kitano, H.: Bio-calculus: Its concept, and an application for molecular interaction. In: Currents in Computational Molecular Biology. Frontiers Science Series, vol. 30, Universal Academy Press, Inc. (2000) (This book is a collection of poster papers presented at the RECOMB 2000, Poster Session)Google Scholar
  4. 4.
    Eker, S., Knapp, M., Laderoute, K., Lincoln, P., Meseguer, J., Sönmez, M.K.: Pathway logic: Symbolic analysis of biological signaling. In: Proceedings of the seventh Pacific Symposium on Biocomputing, pp. 400–412 (2002)Google Scholar
  5. 5.
    Matsuno, H., Doi, A., Nagasaki, M., Miyano, S.: Hybrid petri net representation of gene regulatory network. In: Proceedings of the 5th Pacific Symposium on Biocomputing, pp. 338–349 (2000)Google Scholar
  6. 6.
    Hofestädt, R., Thelen, S.: Quantitative modeling of biochemical networks. In: Silico Biology, vol. 1, pp. 39–53. IOS Press, Amsterdam (1998)Google Scholar
  7. 7.
    Alur, R., Belta, C., Ivančić, F., Kumar, V., Mintz, M., Pappas, G.J., Rubin, H., Schug, J.: Hybrid modeling and simulation of biomolecular networks. In: Di Benedetto, M.D., Sangiovanni-Vincentelli, A.L. (eds.) HSCC 2001. LNCS, vol. 2034, pp. 19–32. Springer, Heidelberg (2001)CrossRefGoogle Scholar
  8. 8.
    Ghosh, R., Tomlin, C.J.: Lateral inhibition through delta-notch signaling: A piecewise affine hybrid model. In: Di Benedetto, M.D., Sangiovanni-Vincentelli, A.L. (eds.) HSCC 2001. LNCS, vol. 2034, pp. 232–246. Springer, Heidelberg (2001)CrossRefGoogle Scholar
  9. 9.
    Bockmayr, A., Courtois, A.: Using hybrid concurrent constraint programming to model dynamic biological systems. In: Stuckey, P.J. (ed.) ICLP 2002. LNCS, vol. 2401, pp. 85–99. Springer, Heidelberg (2002)CrossRefGoogle Scholar
  10. 10.
    ARC CPBIO: Process calculi and biology of molecular networks (2002–2003),
  11. 11.
    Cimatti, A., Clarke, E., Giunchiglia, E., Giunchiglia, F., Pistore, M., Roveri, M., Sebastiani, R., Tacchella, A.: NuSMV 2: An openSource tool for symbolic model checking. In: Brinksma, E., Larsen, K.G. (eds.) CAV 2002. LNCS, vol. 2404, p. 359. Springer, Heidelberg (2002)CrossRefGoogle Scholar
  12. 12.
    Clarke, E.M., Grumberg, O., Peled, D.A.: Model Checking. MIT Press, Cambridge (1999)Google Scholar
  13. 13.
    Chabrier, N., Chiaverini, M., Danos, V., Fages, F., Schächter, V.: Modeling and querying biochemical networks. In: Theoretical Computer Science (to appear, 2004)Google Scholar
  14. 14.
    Chabrier, N., Fages, F.: Symbolic model checking of biochemical networks. In: Priami, C. (ed.) CMSB 2003. LNCS, vol. 2602, pp. 149–162. Springer, Heidelberg (2003)CrossRefGoogle Scholar
  15. 15.
    Chiaverini, M., Danos, V.: A core modeling language for the working molecular biologist (Abstract). In: Priami, C. (ed.) CMSB 2003. LNCS, vol. 2602, pp. 166–166. Springer, Heidelberg (2003)CrossRefGoogle Scholar
  16. 16.
    Kohn, K.W.: Molecular interaction map of the mammalian cell cycle control and DNA repair systems. Molecular Biology of Cell 10, 2703–2734 (1999)CrossRefGoogle Scholar
  17. 17.
    Maimon, R., Browning, S.: Diagrammatic notation and computational structure of gene networks. In: Yi, T.M., Hucka, M., Morohashi, M., Kitano, H. (eds.) Proceedings of the 2nd International Conference on Systems Biology, Online Proceedings (2001),
  18. 18.
    Kolch, W., Kotwaliwale, A., Vass, K., Janosch, P.: The role of raf kinases in malignant transformation. In: Expert Reviews in Molecular Medicine, vol. 25. Cambridge University Press, Cambridge (2002), Google Scholar
  19. 19.
    Shapiro, B.E., Levchenko, A., Meyerowitz, E.M., Wold, B.J., Mjolsness, E.D.: Cellerator: extending a computer algebra system to include biochemical arrows for signal transduction simulations. Bioinformatics 19, 677–678 (2003), CrossRefGoogle Scholar
  20. 20.
    Hucka, M., et al.: The systems biology markup language (SBML): A medium for representation and exchange of biochemical network models. Bioinformatics 19, 524–531 (2003), CrossRefGoogle Scholar
  21. 21.
    Levchenko, A., Bruck, J., Sternberg, P.W.: Scaffold proteins biphasically affect the levels of mitogen-activated protein kinase signaling and reduce its threshold properties. PNAS 97, 5818–5823 (2000)CrossRefGoogle Scholar
  22. 22.
    Kanehisa, M., Goto, S.: KEGG: Kyoto encyclopedia of genes and genomes. Nucleic Acids Research 28, 27–30 (2000)CrossRefGoogle Scholar
  23. 23.
    Soliman, S., Fages, F.: CMBSlib: A library for comparing formalisms and models of biological systems. In: Danos, V., Schachter, V. (eds.) CMSB 2004. LNCS (LNBI), vol. 3082, pp. 231–235. Springer, Heidelberg (2005)CrossRefGoogle Scholar
  24. 24.
    Muggleton, S.H.: Inverse entailment and progol. New Generation Computing 13, 245–286 (1995)CrossRefGoogle Scholar
  25. 25.
    Schaff, J., Loew, L.M.: The virtual cell. In: Proceedings of the fourth Pacific Symposium on Biocomputing, pp. 228–239 (1999)Google Scholar
  26. 26.
    Chen, K.C., Csikász-Nagy, A., Györffy, B., Val, J., Novàk, B., Tyson, J.J.: Kinetic analysis of a molecular model of the budding yeast cell cycle. Molecular Biology of the Cell 11, 391–396 (2000)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2005

Authors and Affiliations

  • Nathalie Chabrier-Rivier
    • 1
  • François Fages
    • 1
  • Sylvain Soliman
    • 1
  1. 1.Projet Contraintes, INRIA RocquencourtLe ChesnayFrance

Personalised recommendations