Interactive Real-Time Simulation of the Internal Limiting Membrane

  • Johannes P. W. Grimm
  • Clemens Wagner
  • Reinhard Männer
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 3078)


The paper describes three new tissue deformation algorithms. We present a Mass-spring simulation with a quasi-static modification of the Euler integration to increase the stability of the simulation. A directed length correction for springs and an algorithm called Dragnet are suggested to enhance propagation of large local displacements through the Mass-spring mesh. The new algorithms are compared with methods already in use. The combination of Dragnet and the quasi-static Mass-spring modification is used for the interactive real-time simulation of an ophthalmological procedure, the removal of the Internal Limiting Membrane (ILM).


Interaction Point Internal Limit Membrane Common Bile Duct Exploration Length Correction Euler Integration 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Schill, M., Wagner, C., Hennen, M., Bender, H.J., Männer, R.: Eyesi - a simulator for intraocular surgery. In: Taylor, C., Colchester, A. (eds.) MICCAI 1999. LNCS, vol. 1679, pp. 1166–1174. Springer, Heidelberg (1999)CrossRefGoogle Scholar
  2. 2.
    Basdogan, C., Ho, C., Srinivasan, M.: Virtual environments for medical training: Graphical and haptic simulation of common bile duct exploration (2001)Google Scholar
  3. 3.
    Kühnapfel, U., Cakmak, H., Maass, H.: Endoscopic surgery training using virtual reality and deformable tissue simulation. Computers & Graphics 24, 671–682 (2000)CrossRefGoogle Scholar
  4. 4.
    Nedel, L.P., Thalmann, D.: (Real time muscle deformations using mass-spring systems), pp. 156–165Google Scholar
  5. 5.
    Baraff, D., Witkin, A.: Large steps in cloth simulation. Computer Graphics 32, 43–54 (1998)Google Scholar
  6. 6.
    Provot, X.: Deformation Constraints in a Mass-Spring Model to Describe Rigid Cloth Behavior. In: Davis, W.A., Prusinkiewicz, P. (eds.) Graphics Interface 1995, Canadian Human-Computer Communications Society, pp. 147–154 (1995)Google Scholar
  7. 7.
    Brown, J., Sorkin, S., Latombe, J.C., Montgomery, K., Stephanides, M.: Algorithmic tools for real-time microsurgery simulation. In: Algorithmic tools for real-time microsurgery simulation, p. 2208 (2001)Google Scholar
  8. 8.
    Mosegaard, J.: Lr-spring mass model for cardiac surgical simulation. Medicine Meets Virtual Reality 12, 256–258 (2004)Google Scholar
  9. 9.
    Gibson, S.: 3d chainmail: a fast algorithm for deforming volumetric objects. In: Symposium on Interactive 3D Graphics, pp. 149–154 (1997)Google Scholar
  10. 10.
    Schill, M., Gibson, S., Bender, H.J., Männer, R.: Biomechanical Simulation of the Vitreous Humor in the Eye Using an Enhanced ChainMail Algorithm. In: Wells, W.M., Colchester, A.C.F., Delp, S.L. (eds.) MICCAI 1998. LNCS, vol. 1496, pp. 679–687. Springer, Heidelberg (1998)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2004

Authors and Affiliations

  • Johannes P. W. Grimm
    • 1
  • Clemens Wagner
    • 2
  • Reinhard Männer
    • 1
    • 2
  1. 1.Institute for Computational MedicineUniversity of MannheimGermany
  2. 2.Department of Computerscience VUniversity of MannheimGermany

Personalised recommendations