An Interactive Parallel Multigrid FEM Simulator

  • Xunlei Wu
  • Tolga Gokce Goktekin
  • Frank Tendick
Part of the Lecture Notes in Computer Science book series (LNCS, volume 3078)


Interactively simulating nonlinear deformable human organs for surgical training and planning purposes demands high computational power which lacks in single processor machine. We build an interactive deformable objects simulator on a highly scalable computer cluster using nonlinear FEM and the novel multigrid explicit ODE solver which is stabler than single level schemes. The system consists of a graphical front end client on a workstation connected to a parallel simulation server that runs on a Linux cluster. After discussing the methodology in detail, the analysis of the speedup and preliminary results are presented.


Message Passing Interface Single Level Master Node Slave Node Deformable Object 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Blanke, W., Bajaj, C., Zhang, X., Fussell, D.: A cluster based emulator for multidisplay, multiresolution parallel image compositing. In: CS and TICAM Technical Report, University of Texas at Austin (2001)Google Scholar
  2. 2.
    Crockett, T.W.: Parallel rendering. In: SIGGRAPH, Parallel Graphics and Visualization Technology, pp. 157–207 (1998)Google Scholar
  3. 3.
    Eisenhauer, G., Gu, W., Kindler, T., Schwan, K., Silva, D., Vetter, J.: Opportunities and tools for highly interactive distributed and parallel computing. In: Parallel Computer Systems: Performance Instrumentation and Visualization (1996)Google Scholar
  4. 4.
    Heirich, A., Moll, L.: Scalable distributed visualization using off-the-shelf components. In: Parallel Visualization and Graphics Symposium - 1999, San Francisco, California, pp. 55–60 (October 1999)Google Scholar
  5. 5.
    Smith, D.: An interface for efficient vector scatters and gathers on parallel machines. Technical report in Mathematics and Computer Science Division, Argonne. National Laboratory (2001)Google Scholar
  6. 6.
    Szekely, G., Brechbuhler, C., Enzler, R., Dual, J., Hutter, R., Hug, J., Ironmonger, N., Kauer, M., Meier, V., Niederer, P., Rhomberg, A., Schmid, P., Schweitzer, G., Thaler, M., Vuskovic, V., Troster, G.: Virtual reality-based simulation of endoscopic surgery. Presence 9(3), 310–333 (2000)CrossRefGoogle Scholar
  7. 7.
    Wu, X.: Design of an Interactive Nonlinear Finite Element Based Deformable Object Simulator. PhD dissertation, University of California, Berkeley (August 2002)Google Scholar
  8. 8.
    Wu, X., Downies, M.S., Goktekiu, T., Tendick, F.: Adaptive nonlinear finite elements for deformable body simulation using dynamic progressive meshes. In: Chalmers, A., Rhyne, T.-M. (eds.) Eurographics 2001, Manchester, UK, September 2001. Appearing in Computer Graphics Forum, vol. 20(3), pp. 349–358 (2001)Google Scholar
  9. 9.
    Wu, X., Tendick, F.: Multigrid integration for interactive deformable body simulation. In: International Symposium on Medical Simulation 2004, Cambridge, MA, USA (2004)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2004

Authors and Affiliations

  • Xunlei Wu
    • 1
  • Tolga Gokce Goktekin
    • 2
  • Frank Tendick
    • 3
  1. 1.Simulation GroupCIMIT/Harvard UniversityCambridgeUSA
  2. 2.EECS DepartmentUniversity of California BerkeleyBerkeleyUSA
  3. 3.Department of SurgeryUniversity of California San FranciscoSan FranciscoUSA

Personalised recommendations