Multigrid Integration for Interactive Deformable Body Simulation

  • Xunlei Wu
  • Frank Tendick
Part of the Lecture Notes in Computer Science book series (LNCS, volume 3078)


Simulation of soft tissue behavior for surgical training systems is a particularly demanding application of deformable modeling. Explicit integration methods on single mesh require small time step to maintain stability, but this produces slow convergence spatially through the object. In this paper, we propose a multigrid integration scheme to improve the stability and convergence of explicit integration. Our multigrid method uses multiple unstructured independent meshes on the same object. It is shown that, with the proposed multigrid integration, both stability and convergence can be improved significantly over single level explicit integration.


Coarse Mesh Multigrid Method Coarse Level Deformable Modeling Iterative Solver 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Fung, Y.: Biomechanics: Mechanical Properties of Living Tissues. Springer, New York (1993)Google Scholar
  2. 2.
    Alterovitz, R., Pouliot, J., Taschereau, R., Hsu, I.C., Goldberg, K.: Simulating needle insertion and radioactive seed implantation for prostate brachytherapy. In: Westwood, J., et al. (eds.) Medicine Meets Virtual Reality 11, pp. 19–25. IOS Press, Amsterdam (2003)Google Scholar
  3. 3.
    Bro-Nielsen, M.: Finite element modeling in surgery simulation. Proc. IEEE 86, 490–502 (1998)CrossRefGoogle Scholar
  4. 4.
    Cotin, S., Delingette, H., Bro-Nielsen, M., Ayache, N., et al.: Geometric and physical representations for a simulator of hepatic surgery. In: Weghorst, S., et al. (eds.) Medicine Meets Virtual Reality: 4, pp. 139–151. IOS Press, Amsterdam (1996)Google Scholar
  5. 5.
    James, D., Pai, D.: ARTDEFO: Accurate real time deformable objects. In: Proceedings of SIGGRAPH 1999. Computer Graphics Proceedings, Annual Conference Series, Lecture Notes in Computer Science, vol. 13, pp. 65–72. ACM, ACM Press/ACM SIGGRAPH (1999)Google Scholar
  6. 6.
    Cotin, S., Delingette, H., Ayache, N.: Real-time elastic deformations of soft tissues for surgery simulation. IEEE Transactions on Visualization and Computer Graphics 5, 62–73 (1999)CrossRefGoogle Scholar
  7. 7.
    Picinbono, G., Delingette, H., Ayache, N.: Non-linear and anisotropic elastic soft tissue models for medical simulation. In: Proc. IEEE Intl. Conf. Robotics and Automation, Seoul, Korea, pp. 1371–1376 (2001)Google Scholar
  8. 8.
    Müller, M., Dorsey, J., McMillan, L., Jagnow, R., Cutler, B.: Stable real time deformations. In: Proc. ACM SIGGRAPH symposium on Computer Animation, San Antonio, TX, pp. 49–54 (2002)Google Scholar
  9. 9.
    Székely, G., Brechbühler, C., Hutter, R., Rhomberg, A., Ironmonger, N., Schmid, P.: Modelling of soft tissue deformation for laparoscopic surgery simulation. Medical Image Analysis 4, 57–66 (2000)CrossRefGoogle Scholar
  10. 10.
    Zhuang, Y., Canny, J.: Real-time simulation of physically realistic global deformation. In: SIGGRAPH 1999 Sketches and Applications. SIGGRAPH, Los Angeles, California (1999)Google Scholar
  11. 11.
    Wu, X., Downes, M., Goktekin, T., Tendick, F.: Adaptive nonlinear.nite elements for deformable body simulation using dynamic progressive meshes. In: Chalmers, A., Rhyne, T.M. (eds.) Eurographics 2001, Manchester, UK, September 2001. Appearing in Computer Graphics Forum, vol. 20(3), pp. 349–358 (2001)Google Scholar
  12. 12.
    Bara., D., Witkin, A.: Large steps in cloth simulation. In: Proceedings of SIGGRAPH 1998. Computer Graphics Proceedings, Annual Conference Series, pp. 43–54. ACM, ACM Press/ACM SIGGRAPH (1998)Google Scholar
  13. 13.
    Capell, S., Green, S., Curless, B., Duchamp, T., Popovic, Z.: A multiresolution framework for dynamic deformations. In: Proc. ACM SIGGRAPH symposium on Computer Animation, San Antonio, TX, pp. 41–47 (2002)Google Scholar
  14. 14.
    Zienkiewicz, O., Taylor, R.: The Finite Element Method. McGraw-Hill, London (1994)Google Scholar
  15. 15.
    Debunne, G., Desbrun, M., Cani, M.P., Barr, A.: Dynamic real-time deformations using space and time adaptive sampling. In: Proceedings of SIGGRAPH 2001. Computer Graphics Proceedings, Annual Conference Series, pp. 31–36. ACM, ACM Press/ACM SIGGRAPH (2001)Google Scholar
  16. 16.
    Grinspun, E., Krysl, P., Schröder, P.: CHARMS: a simple framework for adaptive simulation. In: Proceedings of SIGGRAPH 2002. Computer Graphics Proceedings, Annual Conference Series, pp. 281–290. ACM, ACM Press/ACM SIGGRAPH (2002)Google Scholar
  17. 17.
    Wesseling, P.: An Introduction to Multigrid Methods. John Wiley, New York (1992)zbMATHGoogle Scholar
  18. 18.
    Demmel, J.: Applied Numerical Linear Algebra. SIAM, Philadelphia (1997)zbMATHGoogle Scholar
  19. 19.
    Wu, X.: Design of an Interactive Nonlinear Finite Element Based Deformable Object Simulator. PhD thesis, Department of Mechanical Engineering, University of California, Berkeley (2002)Google Scholar
  20. 20.
    Shewchuk, J.: Triangle: Engineering a 2D quality mesh generator and Delaunay triangulator. In: Lin, M., Manocha, D. (eds.) Applied Computational Geometry: Towards Geometric Engineering, pp. 203–222. Springer, Heidelberg (1996)CrossRefGoogle Scholar
  21. 21.
    Geuzaine, C., Remacle, J.F.: Gmsh: a three-dimensional .nite element mesh generator with pre- and post-processing facilities (2002),
  22. 22.
    Bathe, K.: Finite Element Procedures. Prentice Hall, Englewood Cliffs (1996)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2004

Authors and Affiliations

  • Xunlei Wu
    • 1
  • Frank Tendick
    • 2
  1. 1.Simulation GroupCIMIT/Harvard UniversityCambridgeUSA
  2. 2.Department of SurgeryUniversity of California San FranciscoSan FranciscoUSA

Personalised recommendations