Three Kinds of Integer Programming Algorithms Based on Barvinok’s Rational Functions

  • J. A. De Loera
  • D. Haws
  • R. Hemmecke
  • P. Huggins
  • R. Yoshida
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 3064)


This paper presents three kinds of algebraic-analytic algorithms for solving integer and mixed integer programming problems. We report both theoretical and experimental results. We use the generating function techniques introduced by A. Barvinok.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Aardal, K., Lenstra, A.K., Lenstra Jr., H.W.: Hard equality constrained integer knapsacks. In: Cook, W.J., Schulz, A.S. (eds.) IPCO 2002. LNCS, vol. 2337, pp. 350–366. Springer, Heidelberg (2002) (preliminary version)CrossRefGoogle Scholar
  2. 2.
    Aardal, K., Weismantel, R., Wolsey, L.: Non-Standard Approaches to Integer Programming. Discrete Applied Mathematics 123, 5–74 (2002)zbMATHCrossRefMathSciNetGoogle Scholar
  3. 3.
    Barvinok, A.I.: Polynomial time algorithm for counting integral points in polyhedra when the dimension is fixed. Math of Operations Research 19, 769–779 (1994)zbMATHCrossRefMathSciNetGoogle Scholar
  4. 4.
    Barvinok, A.I., Pommersheim, J.: An algorithmic theory of lattice points in polyhedra. In: New Perspectives in Algebraic Combinatorics, Berkeley, CA, 1996- 1997. Math. Sci. Res. Inst. Publ., vol. 38, pp. 91–147. Cambridge Univ. Press, Cambridge (1999)Google Scholar
  5. 5.
    Barvinok, A.I., Woods, K.: Short rational generating functions for lattice point problems. Available at arXiv.math.CO.0211146. J. Amer. Math. Soc. 16, 957–979 (2003)zbMATHMathSciNetGoogle Scholar
  6. 6.
    Cornuéjols, G., Urbaniak, R., Weismantel, R., Wolsey, L.A.: Decomposition of integer programs and of generating sets. In: Burkard, R.E., Woeginger, G.J. (eds.) ESA 1997. LNCS, vol. 1284, pp. 92–103. Springer, Heidelberg (1997)CrossRefGoogle Scholar
  7. 7.
    De Loera, J.A., Hemmecke, R., Tauzer, J., Yoshida, R.: Effective lattice point counting in rational convex polytopes. To appear in Journal of Symbolic ComputationGoogle Scholar
  8. 8.
    De Loera, J.A., Haws, D., Hemmecke, R., Huggins, P., Sturmfels, B., Yoshida, R.: Short rational functions for toric algebra and applications. Available at arXiv.math.CO.0307350. To appear in Journal of Symbolic ComputationGoogle Scholar
  9. 9.
    De Loera, J.A., Haws, D., Hemmecke, R., Huggins, P., Tauzer, J., Yoshida, R.: A User’s Guide for LattE v1.1 (2003), Software package LattE is available at
  10. 10.
    Dyer, M., Kannan, R.: On Barvinok’s algorithm for counting lattice points in fixed dimension. Math of Operations Research 22, 545–549 (1997)zbMATHCrossRefMathSciNetGoogle Scholar
  11. 11.
    Hosten, S., Sturmfels, B.: Computing the integer programming gap. Available at math arXiv math.OC/0301266 (2003)Google Scholar
  12. 12.
    Lasserre, J.B.: Integer programming, Barvinok’s counting algorithm and Gomory relaxations. Operations Research Letters 32(2), 133–137 (2004)zbMATHCrossRefMathSciNetGoogle Scholar
  13. 13.
    Lenstra, H.W.: Integer Programming with a fixed number of variables. Mathematics of Operations Research 8, 538–548 (1983)zbMATHCrossRefMathSciNetGoogle Scholar
  14. 14.
    Schrijver, A.: Theory of Linear and Integer Programming. Wiley Interscience, Hoboken (1986)zbMATHGoogle Scholar
  15. 15.
    Thomas, R.: Algebraic methods in integer programming. In: Floudas, C., Pardalos, P. (eds.) Encyclopedia of Optimization, Kluwer Academic Publishers, Dordrecht (2001)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2004

Authors and Affiliations

  • J. A. De Loera
    • 1
  • D. Haws
    • 1
  • R. Hemmecke
    • 1
  • P. Huggins
    • 1
  • R. Yoshida
    • 1
  1. 1.Dept. of MathematicsUniversity of CaliforniaDavisUSA

Personalised recommendations