Skip to main content

Time-Series Prediction: Application to the Short-Term Electric Energy Demand

  • Conference paper

Part of the Lecture Notes in Computer Science book series (LNAI,volume 3040)

Abstract

This paper describes a time-series prediction method based on the kNN technique. The proposed methodology is applied to the 24-hour load forecasting problem. Also, based on recorded data, an alternative model is developed by means of a conventional dynamic regression technique, where the parameters are estimated by solving a least squares problem. Finally, results obtained from the application of both techniques to the Spanish transmission system are compared in terms of maximum, average and minimum forecasting errors.

Keywords

  • Forecast Error
  • Near Neighbour
  • Manhattan Distance
  • Load Forecast
  • Dynamic Regression

These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

This is a preview of subscription content, access via your institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • DOI: 10.1007/978-3-540-25945-9_57
  • Chapter length: 10 pages
  • Instant PDF download
  • Readable on all devices
  • Own it forever
  • Exclusive offer for individuals only
  • Tax calculation will be finalised during checkout
eBook
USD   129.00
Price excludes VAT (USA)
  • ISBN: 978-3-540-25945-9
  • Instant PDF download
  • Readable on all devices
  • Own it forever
  • Exclusive offer for individuals only
  • Tax calculation will be finalised during checkout
Softcover Book
USD   169.00
Price excludes VAT (USA)

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Papalexopoulos, A.D., Hesterberg, T.C.: A Regression-Based Approach to Short-Term System Load Forecasting. IEEE Trans. on Power System 5, 1535–1547 (1990)

    CrossRef  Google Scholar 

  2. Nogales, F.J., Contreras, J., Conejo, A.J., Spínola, R.: Forecasting Next-Day Electricity Prices by Time Series Models. IEEE Trans. on Power System 17, 342–348 (2002)

    CrossRef  Google Scholar 

  3. Alfuhaid, A.S., El-Sayed, M.A.: Cascaded Artificial Neural Network for Short-Term Load Forecasting. IEEE Trans. on Power System 12, 1524–1529 (1997)

    CrossRef  Google Scholar 

  4. Riquelme, J., Martínez, J.L., Gómez, A., Cros Goma, D.: Load Pattern Recognition and Load Forecasting by Artificial Neural Networks. International Journal of Power and Energy Systems 22, 74–79 (2002)

    Google Scholar 

  5. Lamedica, R., Prudenzi, A., Sforna, M., Caciotta, M., Orsolini Cencellli, V.: A Neural Network Based Technique for Short-Term Forecasting of Anomalous Load Periods. IEEE Transaction on Power Systems 11, 1749–1756 (1996)

    CrossRef  Google Scholar 

  6. Troncoso Lora, A., Riquelme Santos, J.C., Riquelme Santos, J.M., Martínez Ramos, J.L., Gómez Expósito, A.: Electricity Market Price Forecasting: Neural Networks versus Weighted-Distance k Nearest Neighbours. DEXA Database Expert Systems and Applications, Aix Provence (2002)

    Google Scholar 

  7. Troncoso Lora, A., Riquelme Santos, J.M., Riquelme Santos, J.C., Gómez Expósito, A., Martínez Ramos, J.L.: Forecasting Next-Day Electricity Prices based on k Weighted Nearest Neighbours and Dynamic Regression. IDEAL Intelligent Data Engineering Autamitized Learning, Mancheste (2001)

    Google Scholar 

  8. Dasarathy, B.V.: Nearest neighbour (NN) Norms: NN pattern classification techniques. IEEE Computer Society Press, Los Alamitos (1991)

    Google Scholar 

  9. Short, R.D., Fukunaga, K.: The Optimal Distance Measure for Nearest Neighbour Classification. IEEE Transaction on Information Theory (1981)

    Google Scholar 

  10. Fukunaga, K., Flick, T.E.: An Optimal Global Nearest Neighbour Metric. IEEE Transaction on Pattern Analysis and Machine Intelligence (1984)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and Permissions

Copyright information

© 2004 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Troncoso Lora, A., Riquelme Santos, J.M., Riquelme, J.C., Gómez Expósito, A., Martínez Ramos, J.L. (2004). Time-Series Prediction: Application to the Short-Term Electric Energy Demand. In: Conejo, R., Urretavizcaya, M., Pérez-de-la-Cruz, JL. (eds) Current Topics in Artificial Intelligence. TTIA 2003. Lecture Notes in Computer Science(), vol 3040. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-25945-9_57

Download citation

  • DOI: https://doi.org/10.1007/978-3-540-25945-9_57

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-22218-7

  • Online ISBN: 978-3-540-25945-9

  • eBook Packages: Springer Book Archive