Formal Verification of Molecular Computational Models in ACL2: A Case Study

  • Francisco J. Martín-Mateos
  • José A. Alonso
  • Maria José Hidalgo
  • José Luis Ruiz-Reina
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 3040)

Abstract

Theorem proving is a classical AI problem with a broad range of applications. Since its complexity is exponential in the size of the problem, many methods to parallelize the process has been proposed. One of these approaches is based on the massive parallelism of molecular reactions. ACL2 is an automated theorem prover especially adequate for algorithm verification. In this paper we present an ACL2 formalization of a molecular computational model: Adleman’s restricted model. As an application of this model, an implementation of Lipton’s experiment solving SAT is described. We use ACL2 to make a formal proof of the completeness and soundness properties of this implementation.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Adleman, L.M.: Molecular computation of solutions to combinatorial problems. Science 266, 1021–1024 (1994)CrossRefGoogle Scholar
  2. 2.
    Adleman, L.M.: On constructing a molecular computer. In: DNA Based Computers. DIMACS Series, vol. 27, pp. 1–21. American Mathematical Society, Providence (1996)Google Scholar
  3. 3.
    Braich, R.S., Chelyapov, N., Johnson, C., Rothemund, P.W.K., Adleman, L.: Solution of a 20-Variable 3-SAT Problem on a DNA Computer. Science 296, 499–502 (2002)CrossRefGoogle Scholar
  4. 4.
    Beaver, D.: A universal molecular computer. DNA Based Computers. DIMACS Series, vol. 27, pp. 29–36. American Mathematical Society, Providence (1996)Google Scholar
  5. 5.
    Graciani, C., Martín–Mateos, F.J., Pérez–Jiménez, M.J.: Specification of Adleman’s Restricted Model Using an Automated Reasoning System: Verification of Lipton’s Experiment. In: Calude, C.S., Dinneen, M.J., Peper, F. (eds.) UMC 2002. LNCS, vol. 2509, pp. 126–136. Springer, Heidelberg (2002)CrossRefGoogle Scholar
  6. 6.
    Kaufmann, M., Manolios, P., Moore, J.S.: Computer-Aided Reasoning: An Approach. Kluwer Academic Publishers, Dordrecht (2000)Google Scholar
  7. 7.
    Kaufmann, M., Moore, J.S.: ACL2 Version 2.7, Homepage (2002), http://www.cs.utexas.edu/users/moore/acl2/
  8. 8.
    Kaufmann, M., Moore, J.S.: Structured Theory Development for a Mechanized Logic. Journal of Automated Reasoning 26(2), 161–203 (2001)MATHCrossRefMathSciNetGoogle Scholar
  9. 9.
    Moore, J.S.: Piton: a mechanically verified assembly-level language. Kluwer Academic Publisher, Dordrecht (1996)Google Scholar
  10. 10.
    Lee, I.-H., Park, J.-Y., Jang, H.-M., Chai, Y.-G., Zhang, B.-T.: DNA Implementation of Theorem Proving with Resolution Refutation in Propositional Logic. In: Hagiya, M., Ohuchi, A. (eds.) DNA 2002. LNCS, vol. 2568, pp. 156–167. Springer, Heidelberg (2003)CrossRefGoogle Scholar
  11. 11.
    Lipton, R.J.: DNA solution of hard computational problems. Science 268, 542–545 (1995)CrossRefGoogle Scholar
  12. 12.
    Owre, S., Rushby, J.M., Shankar, N., Stringer–Calvert, D.W.J.: PVS System Guide. Homepage, http://pvs.csl.sri.com/
  13. 13.
    Paun, G.: Computing with membranes. Journal of Computer and System Sciences 61(1), 108–143 (2000)MATHCrossRefMathSciNetGoogle Scholar
  14. 14.
    Pérez–Jiménez, M.J., Sancho, F., Graciani, C., Romero, A.: Soluciones moleculares del problema SAT (in spanish). Lógica, Lenguaje e Información. In: Kronos (ed.) JOLL 2000, pp. 243–252 (2000)Google Scholar
  15. 15.
    Russinoff, D.: A mechanically checked proof of IEEE compliance of the floating point multiplication, division and square root algorithms of the AMD-K7 processor. LMS J. of Comp. Math. 1, 148–200 (1998)MATHMathSciNetGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2004

Authors and Affiliations

  • Francisco J. Martín-Mateos
    • 1
  • José A. Alonso
    • 1
  • Maria José Hidalgo
    • 1
  • José Luis Ruiz-Reina
    • 1
  1. 1.Computational Logic Group, Dept. of Computer Science and Artificial IntelligenceUniversity of Seville, E.T.S.I. InformáticaSevillaSpain

Personalised recommendations