Advertisement

Edge Preserving Filters on Color Images

  • Vinh Hong
  • Henryk Palus
  • Dietrich Paulus
Part of the Lecture Notes in Computer Science book series (LNCS, volume 3039)

Abstract

In this contribution we present experiments on color image enhancement for several different non-linear filters which originally were defined for gray-level images. We disturb sample images by different types of noise and measure performance of the filters. We provide signal-to-noise measurements as well as perceived color difference in ΔE as defined by the CIE. All images and test programs are provided online on the internet so that experiments can be validated by arbitrary users on any image data.

Keywords

color image enhancement edge-preserving filters ΔE performance measures 

References

  1. 1.
    Astola, J., Haavisto, P., Neuvo, Y.: Vector median filters. Proceedings of the IEEE 78, 678–689 (1990)CrossRefGoogle Scholar
  2. 2.
    Bakker, P., van Fliet, L.J., Verbeek, P.W.: Edge preserving orientation adaptive filtering. In: Proc. 5th Annual Conference of the Advanced School for Computing and Imaging, pp. 207–213 (1999)Google Scholar
  3. 3.
    Chastel, S., Schwab, G., Paulus, D.: Web interface for image processing algorithms. In: Santini, S., Schettini, R. (eds.) ECCV 2008, Part III, vol. 1 (2004); In: Proc. of SPIE, vol. 5304Google Scholar
  4. 4.
    Gierling, R.: Farbmanagement. Moderne Industrie Buch AG & Co. KG, Bonn (2001)Google Scholar
  5. 5.
    Gonzalez, R.C., Woods, R.E.: Digital Image Processing, 2nd edn. Prentice Hall, Englewood Cliffs (2001)Google Scholar
  6. 6.
    Harwood, D., Subbarao, M., Hakalahti, H., Davis, L.: A new class of edge-preserving smoothing filters. Pattern Recognition Letters 5, 155–162 (1987)CrossRefGoogle Scholar
  7. 7.
    Kuwahara, M., Hachimura, K., Eiho, S., Kinoshita, M.: Digital Processing of Biomedical Images. In: Processing of ri-angiocardiographic images, pp. 187–202. Plenum Press, New York (1976)Google Scholar
  8. 8.
    Nagao, M., Matsuyama, T.: Edge preserving smoothing. Computer Graphics and Image Processing 9, 394–407 (1979)CrossRefGoogle Scholar
  9. 9.
    Pietikainen, M., Harwood, D.: Advances in Image Processing and Pattern Recognition. In: Segmentation of color images using edge-preserving, pp. 94–99. North Holland, Amsterdam (1986)Google Scholar
  10. 10.
    Plataniotis, K.N., Venetsanopoulos, A.N.: Color Image Processing and Applications. Springer, Heidelberg (2000)Google Scholar
  11. 11.
    Rehrmann, V. (ed.): Erster Workshop Farbbildverarbeitung. Universität Koblenz–Landau (1995)Google Scholar
  12. 12.
    Richter, M.: Einführung in die Farbmetrik, 2nd edn. Walter de Gruyter, Berlin (1981)Google Scholar
  13. 13.
    Sangwine, S.J., Horne, R.E.N.: The Colour Image Processing Handbook. Chapman Hall, London (1998)Google Scholar
  14. 14.
    van den Boomgaard, R.: Decomposition of the Kuwahara-Nagao operator in terms of linear smoothing and morphological sharpening. In: Proc. of the 6th International Symposium on Mathematical Morphology, pp. 283–292 (2002)Google Scholar
  15. 15.
    Wyszecki, G., Stiles, W.S.: Color Science: Concepts and Methods, Quantitative Data and Formulas, 2nd edn. John Wiley & Sons, Chichester (1982)Google Scholar
  16. 16.
    Zhang, X., Wandell, B.A.: Color image fidelity metrics evaluated using image distortion maps. Signal Processing 70(3), 201–214, 11 (1998)zbMATHCrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2004

Authors and Affiliations

  • Vinh Hong
    • 1
  • Henryk Palus
    • 2
  • Dietrich Paulus
    • 1
  1. 1.Institut für ComputervisualistikUniversität Koblenz-LandauKOBLENZGermany
  2. 2.Institute of Automatic ControlSilesian University of TechnologyGLIWICEPoland

Personalised recommendations