Advertisement

A Derivative-Free Tracking Algorithm for Implicit Curves with Singularities

  • José F. M. Morgado
  • Abel J. P. Gomes
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 3039)

Abstract

This paper introduces a new algorithm for rendering implicit curves. It is curvature-adaptive. But, unlike most curve algorithms, no differentiation techniques are used to compute self-intersections and other singularities (e.g. corners and cusps). Also, of theoretical interest, it uses a new numerical method for sampling curves pointwise.

References

  1. 1.
    Allgower, E., Gnutzmann, S.: Simplicial Pivoting for Mesh Generation of Implicitly Defined Surfaces. Comp. Aid. Geom. Des. 8, 30–46 (1991)MathSciNetGoogle Scholar
  2. 2.
    Abhyankar, S., Bajaj, C.: Automatic parameterization of rational curves and surfaces III: algebraic plane curves. Technical Report CSD-TR-619, Purdue University, Computer Science Department, USA (1987)Google Scholar
  3. 3.
    Arnon, D.: Topologically reliable display of algebraic curves. Comp. Graph. 17, 219–227 (1983)CrossRefGoogle Scholar
  4. 4.
    Bloomenthal, J.: Poligonisation of implicit surfaces. Comp. Aid. Geom. Des. 5, 341–355 (1988)zbMATHCrossRefMathSciNetGoogle Scholar
  5. 5.
    Chandler, R.: A tracking algorithm for implicitly defined curves. IEEE Comp. Graph. and Appl. 8, 83–89 (1988)CrossRefGoogle Scholar
  6. 6.
    Hobby, J.: Rasterization of nonparametric curves. ACM Trans. on Graph. 9, 262–277 (1990)zbMATHCrossRefGoogle Scholar
  7. 7.
    Keyser, J., Culver, T., Manocha, D., Krishnan, S.: MAPC: a library for efficient and exact manipulation of algebraic points and curves. In: Proceedings of the 15th ACM Symposium on Computational Geometry, pp. 360–369. ACM Press, New York (1999)Google Scholar
  8. 8.
    Krishnan, S., Manocha, D.: Numeric-symbolic algorithms for evaluating onedimensional algebraic sets. In: Proceedings of the ACM Symposium on Symbolic and Algebraic Computation, pp. 59–67 (1995)Google Scholar
  9. 9.
    Lopes, H., Oliveira, J., Figueiredo, L.: Robust adaptive polygonal approximation of implicit curves. In: Proceedings of the SibGrapi 2001, IEEE Computer Society, Los Alamitos (2001)Google Scholar
  10. 10.
    Lorensen, W., Cline, W.: Marching Cubes: A High Resolution 3D Surface Construction Algorithm. Comp. Graph. 21, 163–169 (1987)CrossRefGoogle Scholar
  11. 11.
    Moeller, T., Yagel, R.: Efficient rasterization of implicit functions (1995), http://citeseer.nj.nec.com/357413.html
  12. 12.
    Press, W., Flannery, B., Teukolsky, S., Vetterling, W.: Numerical recipes in C: the art of scientific computing, 2nd edn. Cambridge University Press, Cambridge (1992)Google Scholar
  13. 13.
    Shewchuk, J.: Adaptive precision floating-point arithmetic and fast robust geometric predicates. Disc. and Comp. Geom. 18, 305–363 (1997)zbMATHCrossRefMathSciNetGoogle Scholar
  14. 14.
    Snyder, J.: Interval arithmetic for computer graphics. In: Proceedings of ACM SIGGRAPH 1992, pp. 121–130. ACM Press, New York (1992)CrossRefGoogle Scholar
  15. 15.
    Taubin, G.: An accurate algorithm for rasterizing algebraic curves. In: Proceedings of the 2nd ACM Solid Modeling and Applications, pp. 221–230. ACM Press, New York (1993)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2004

Authors and Affiliations

  • José F. M. Morgado
    • 1
  • Abel J. P. Gomes
    • 1
  1. 1.Dept. Computer Science and EngineeringUniv. Beira InteriorCovilhãPortugal

Personalised recommendations