Advertisement

A {k, n}-Secret Sharing Scheme for Color Images

  • Rastislav Lukac
  • Konstantinos N. Plataniotis
  • Anastasios N. Venetsanopoulos
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 3039)

Abstract

This paper introduces a new {k,n}-secret sharing scheme for color images. The proposed method encrypts the color image into n color shares. The secret information is recovered only if the k (or more) allowed shares are available for decryption. The proposed method utilizes the conventional {k, n}-secret sharing strategy by operating at the bit-levels of the decomposed color image. Modifying the spatial arrangements of the binary components, the method produces color shares with varied both the spectral characteristics among the RGB components and the spatial correlation between the neighboring color vectors. Since encryption is done in the decomposed binary domain, there is no obvious relationship in the RGB color domain between any two color shares or between the original color image and any of the n shares. This increases protection of the secret information. Inverse cryptographic processing of the shares must be realized in the decomposed binary domain and the procedure reveals the original color image with perfect reconstruction.

Keywords

Color Image Secret Share Scheme Secret Information Perfect Reconstruction Binary Component 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

References

  1. 1.
    Adhikari, A., Sikdar, S.: A new (2,n)-visual threshold scheme for color images. In: Johansson, T., Maitra, S. (eds.) INDOCRYPT 2003. LNCS, vol. 2904, pp. 148–161. Springer, Heidelberg (2003)CrossRefGoogle Scholar
  2. 2.
    Ateniese, G., Blundo, C., de Santis, A., Stinson, D.G.: Visual cryptography for general access structures. Information and Computation 129, 86–106 (1996)zbMATHCrossRefMathSciNetGoogle Scholar
  3. 3.
    Ateniese, G., Blundo, C., de Santis, A., Stinson, D.G.: Extended capabilities for visual cryptography. Theoretical Computer Science 250, 143–161 (2001)zbMATHCrossRefMathSciNetGoogle Scholar
  4. 4.
    Droste, S.: New results on visual cryptography. In: Koblitz, N. (ed.) CRYPTO 1996. LNCS, vol. 1109, pp. 401–415. Springer, Heidelberg (1996)Google Scholar
  5. 5.
    Eisen, P.A., Stinson, D.R.: Threshold visual cryptography schemes with specified levels of reconstructed pixels. Design, Codes and Cryptography 25, 15–61 (2002)zbMATHCrossRefMathSciNetGoogle Scholar
  6. 6.
    Hofmeister, T., Krause, M., Simon, H.U.: Contrast optimal k out of n secret sharing schemes in visual cryptography. Theoretical Computer Science 240, 471–485 (2000)zbMATHCrossRefMathSciNetGoogle Scholar
  7. 7.
    Hou, J.C.: Visual cryptography for color images. Pattern Recognition 36, 1619–1629 (2003)CrossRefGoogle Scholar
  8. 8.
    Ishihara, T., Koga, H.: A visual secret sharing scheme for color images based on meanvalue-color mixing. IEICE Trans. Fundamentals E86-A, 194–197 (2003)Google Scholar
  9. 9.
    Koga, H., Iwamoto, M., Yakamoto, H.: An analytic construction of the visual secret sharing scheme for color images. IEICE Trans. Fundamentals E84-A, 262–272 (2001)Google Scholar
  10. 10.
    Lin, C.C., Tsai, W.H.: Visual cryptography for gray-level images by dithering techniques. Pattern Recognition Letters 24, 349–358 (2003)CrossRefGoogle Scholar
  11. 11.
    Naor, M., Shamir, A.: Visual Cryptography. In: De Santis, A. (ed.) EUROCRYPT 1994. LNCS, vol. 950, pp. 1–12. Springer, Heidelberg (1995)CrossRefGoogle Scholar
  12. 12.
    Ulichney, R.A.: Dithering with blue noise. Proceedings of the IEEE 76, 56–79 (1988)CrossRefGoogle Scholar
  13. 13.
    Yang, C.N.: A note on color visual encryption. Journal of Information Science and Engineering 18, 367–372 (2002)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2004

Authors and Affiliations

  • Rastislav Lukac
    • 1
  • Konstantinos N. Plataniotis
    • 1
  • Anastasios N. Venetsanopoulos
    • 1
  1. 1.The Edward S. Rogers Sr. Dept. of Electrical and Computer EngineeringUniversity of TorontoTorontoCanada

Personalised recommendations