Skip to main content

Rough Set-Based Classification of EEG-Signals to Detect Intraoperative Awareness: Comparison of Fuzzy and Crisp Discretization of Real Value Attributes

  • Conference paper
Rough Sets and Current Trends in Computing (RSCTC 2004)

Abstract

Automated classification of calculated EEG parameters has been shown to be a promising method for detection of intraoperative awareness. In the present study, rough set-based methods were employed to generate classification rules. For these methods, discrete attributes are required. We compared a crisp and a fuzzy discretization of the real parameter values. Fuzzy discretization transforms one real attribute value to several discrete values. By combining the different (discrete) values of all attributes, several sub-objects were produced from a single original object. Rule generation from a training set of objects and classification of a test set provided good classification rates of approximately 90% for both crisp and fuzzy discretization. Fuzzy discretization resulted in a simpler and smaller rule set than crisp discretization. Therefore, the simplicity of the resulting classifier justifies the higher computational effort caused by fuzzy discretization.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Bazan, J., Skowron, A., Synak, P.: Dynamic Reducts as a Tool for Extracting Laws from Decision Tables. In: International Symposium on Methodologies for Intelligent Systems ISMIS. LNCS (LNAI), vol. 869, pp. 346–355. Springer, Heidelberg (1994)

    Google Scholar 

  2. Doyle, J.R.: MCC - Multiple Correlation Clustering. International Journal of Man-Machine Studies 37(6), 751–765 (1992)

    Article  Google Scholar 

  3. Liu, H., Hussain, F., Tan, C.L., Dash, M.: Discretization: An Enabling Technique. Data Mining and Knowledge Discovery 6(4), 393–423 (2002)

    Article  MathSciNet  Google Scholar 

  4. Metz, C.E.: Basic Principles of ROC Analysis. Seminars in Nuclear Medicine 8(4), 283–298 (1978)

    Article  Google Scholar 

  5. Nguyen, H.S., Nguyen, S.H.: Discretization Methods in Data Mining. In: Polkowski, L., Skowron, A. (eds.) Rough Sets in Knowledge Discovery 1 - Methodology and Applications, pp. 451–482. Physica-Verlag, Heidelberg (1998)

    Google Scholar 

  6. Pawlak, Z.: Rough Sets. International Journal of Computer and Information Sciences 11(5), 341–356 (1982)

    Article  MATH  MathSciNet  Google Scholar 

  7. Schneider, G., Marcu, T., Stockmanns, G., Schäpers, G., Kochs, E.F.: Detection of Awareness during TIVA and Balanced Anesthesia Based on Wavelet-Transformed Auditory Evoked Potentials.: A297 (2002), http://www.asa-abstracts.com

  8. Shan, N., Ziarko, W.: Data-based Acquisition and Incremental Modification of Classification Rules. Computational Intelligence 11(2), 357–370 (1995)

    Article  MathSciNet  Google Scholar 

  9. Slezak, D.: Searching for Frequential Reducts in Decision Tables with Uncertain Objects. In: Polkowski, L., Skowron, A. (eds.) RSCTC 1998. LNCS (LNAI), vol. 1424, pp. 52–59. Springer, Heidelberg (1998)

    Chapter  Google Scholar 

  10. Slowinski, R., Stefanowski, J.: Rough-Set Reasoning about uncertain data. Fundamenta Informaticae 27(2-3), 229–243 (1996)

    MATH  MathSciNet  Google Scholar 

  11. Tsumoto, S., Tanaka, H.: PRIMEROSE: Probabilistic Rule Induction Method Based on Rough Sets and Resampling Methods. Computational Intelligence 11(2), 389–405 (1995)

    Article  Google Scholar 

  12. Tsumoto, S., Tanaka, H.: Automated Discovery of Medical Expert System Rules from Clinical Databases Based on Rough Sets. In: Proceedings of the 2nd International Conference on Knowledge Discovery and Data Mining, pp. 63–69. AAAI Press, Menlo Park (1996)

    Google Scholar 

  13. Watanabe, H., Detloff, W.D.: VLSI fuzzy chip and inference accelerator board systems. In: Zadeh, L.A., Kacprzyk, J. (eds.) Fuzzy Logic for the Management of Uncertainty, pp. 211–243. John Wiley & Sons Inc., New York (1992)

    Google Scholar 

  14. Ziarko, W.: Variable Precision Rough Set Model. Journal of Computer and System Sciences 46, 39–59 (1993)

    Article  MATH  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2004 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Ningler, M., Stockmanns, G., Schneider, G., Dressler, O., Kochs, E.F. (2004). Rough Set-Based Classification of EEG-Signals to Detect Intraoperative Awareness: Comparison of Fuzzy and Crisp Discretization of Real Value Attributes. In: Tsumoto, S., Słowiński, R., Komorowski, J., Grzymała-Busse, J.W. (eds) Rough Sets and Current Trends in Computing. RSCTC 2004. Lecture Notes in Computer Science(), vol 3066. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-25929-9_105

Download citation

  • DOI: https://doi.org/10.1007/978-3-540-25929-9_105

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-22117-3

  • Online ISBN: 978-3-540-25929-9

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics