Skip to main content

Search Based Automatic Test-Data Generation at an Architectural Level

  • Conference paper

Part of the Lecture Notes in Computer Science book series (LNCS,volume 3103)

Abstract

The need for effective testing techniques for architectural level descriptions is widely recognised. However, due to the variety of domain-specific architectural description languages, there remains a lack of practical techniques in many application domains. We present a simulation-based testing framework that applies optimisation-based search to achieve high-performance testing for a type of architectural model. The search based automatic test-data generation technique forms the core of the framework. Matlab/Simulink is popularly used in embedded systems engineering as an architectural-level design notation. Our prototype framework is built on Matlab for testing Simulink models. The technology involved should apply to the other architectural notations provided that the notation supports execution or simulation.

Keywords

  • Fault Injection
  • Path Coverage
  • Architectural Level
  • Coverage Capability
  • Search Base Software Engineering

These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

This is a preview of subscription content, access via your institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • DOI: 10.1007/978-3-540-24855-2_161
  • Chapter length: 12 pages
  • Instant PDF download
  • Readable on all devices
  • Own it forever
  • Exclusive offer for individuals only
  • Tax calculation will be finalised during checkout
eBook
USD   74.99
Price excludes VAT (USA)
  • ISBN: 978-3-540-24855-2
  • Instant PDF download
  • Readable on all devices
  • Own it forever
  • Exclusive offer for individuals only
  • Tax calculation will be finalised during checkout
Softcover Book
USD   99.00
Price excludes VAT (USA)

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Beizer, B.: Software Testing Techniques, 2nd edn. Thomason Computer Press (1990)

    Google Scholar 

  2. Bottaci, L.: Predicate Expression Cost Functions to Guide Evolutionary Search for Test Data. In: GECCO 2003 (2003)

    Google Scholar 

  3. Beiman, J., Dreilinger, D., Lin, L.: Using Fault Injection to Increase Software Test Coverage. In: Proc. 7th Int. Symp. on Software Reliability Engineering, ISSRE 1996 (1996)

    Google Scholar 

  4. Voas, J., McGraw, G.: Software Fault Injection: Innoculating Programs Against Errors. John Wiley & Sons, Chichester (1997)

    Google Scholar 

  5. Zhu, H., Hall, P.A.V., May, J.H.R.: Software Unit Test Coverage and Adequacy. ACM Computing Surveys 29(4) (December 1997)

    Google Scholar 

  6. Tracey, N., Clark, J., Mander, K., McDermid, J.: An Automated Framework for Structural Test Data Generation. In: Automated Software Engineering, Honolulu (1998)

    Google Scholar 

  7. Kirkpatrick, S., Gelatt, C., Vecchi, M.: Optimization by Simulated Annealing. Science 220(4598), 671–680 (1983)

    CrossRef  MathSciNet  Google Scholar 

  8. Jones, B.F., Sthamer, H., Eyres, D.E.: Automatic Structural Testing Using Genetic Algorithms. Software Engineering Journal 11(5), 299–306 (1996)

    CrossRef  Google Scholar 

  9. Korel, B.: Automated Software Test Data Generation. IEEE Transactions on Software Engineering 16(8), 870–879 (1990)

    CrossRef  Google Scholar 

  10. Reeves, C.R. (ed.): Modern Heuristic Techniques for Combinatorial Problems. Blackwell Scientific Publications, Oxford (1993)

    MATH  Google Scholar 

  11. Wegener, J., Baresel, A., Sthamer, H.: Evolutionary Test Environment for Automatic Structural Testing. Information and Software Technology 43, 841–854 (2001)

    CrossRef  Google Scholar 

  12. Tracey, N., Clark, J., McDermid, J., Mander, K.: Integrating Safety Analysis with Automatic Test-Data Generation for Software Safety Verification. In: 17th International System Safety Conference, August 1999, pp. 128–137 (1999)

    Google Scholar 

  13. Tracey, N., Clark, J., Mander, K., McDermid, J.: Automated test-data generation for exception conditions. Software Practice and Experience (January 2000)

    Google Scholar 

  14. Tracey, N., Clark, J., Mander, K.: Automated Program Flaw Finding using Simulated Annealing. In: International Symposium on Software Testing and Analysis, ISSTA (1998)

    Google Scholar 

  15. Metropolis, N., Rosenbluth, A.W., Teller, A.H., Teller, E.: Equation of State Calculation by Fast Computing Machine. Journal of Chem. Phys. 21, 1087–1091 (1953)

    CrossRef  Google Scholar 

  16. Baradhi, G., Mansour, N.: A Comparative Study of Five Regression Testing Algorithms. In: The Proceedings of the Australian Software Engineering Conference (1997)

    Google Scholar 

  17. Kirner, R., Lang, R., Freiberger, G., Puschner, P.: Fully Automatic Worst-Case Execution Time Analysis for Matlab/Simulink Models. In: 14th Euromicro Conference on Real-Time Systems (ECRTS 2002), Austria (2002)

    Google Scholar 

  18. Search Based Software Test Data generation: A Survey. Phil McMinn. Preprint (to appear in STVR), http://www.dcs.shef.ac.uk/~phil/pub/sbst.pdf

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and Permissions

Copyright information

© 2004 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Zhan, Y., Clark, J. (2004). Search Based Automatic Test-Data Generation at an Architectural Level. In: Deb, K. (eds) Genetic and Evolutionary Computation – GECCO 2004. GECCO 2004. Lecture Notes in Computer Science, vol 3103. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-24855-2_161

Download citation

  • DOI: https://doi.org/10.1007/978-3-540-24855-2_161

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-22343-6

  • Online ISBN: 978-3-540-24855-2

  • eBook Packages: Springer Book Archive