Skip to main content

Real-Valued Negative Selection Algorithm with Variable-Sized Detectors

  • Conference paper
Genetic and Evolutionary Computation – GECCO 2004 (GECCO 2004)

Part of the book series: Lecture Notes in Computer Science ((LNCS,volume 3102))

Included in the following conference series:

Abstract

A new scheme of detector generation and matching mechanism for negative selection algorithm is introduced featuring detectors with variable properties. While detectors can be variable in different ways using this concept, the paper describes an algorithm when the variable parameter is the size of the detectors in real-valued space. The algorithm is tested using synthetic and real-world datasets, including time series data that are transformed into multiple-dimensional data during the preprocessing phase. Preliminary results demonstrate that the new approach enhances the negative selection algorithm in efficiency and reliability without significant increase in complexity.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. de Castro, L.N., et al.: Artificial Immune System: A New Computational Intelligence Approach. Springer, Heidelberg (2002)

    MATH  Google Scholar 

  2. Dasgupta, D., et al.: Artificial Immune System (AIS) Research in the Last Five Years. In: IEEE Congress of Evolutionary Computation (CEC), Canberra, Australia (2003)

    Google Scholar 

  3. Hofmeyr, S., Forrest, S.: Architecture for an artificial immune system. Evolutional Computation Journal 8(4) (2000)

    Google Scholar 

  4. de Castro, L.N., Timmis, J.I.: Artificial Immune Systems as a Novel Soft Computing Paradigm. Soft Computing Journal 7(7) (2003)

    Google Scholar 

  5. Dasgupta, D., et al.: An Anomaly Detection Algorithm Inspired by the Immune System. In: Dasgupta, D., et al. (eds.) Artificial Immune System and Their Application (1999)

    Google Scholar 

  6. Esponda, F., Forrest, S., Helman, P.: A Formal Framework for Positive and Negative Detection Scheme. IEEE Transaction on Systems, Man, and Cybernetics (2003)

    Google Scholar 

  7. Ayara, M., Timmis, J., de Lemos, R., de Castro, L., Duncan, R.: Negative Selection: How to Generate Detectors. In: 1st International Conference on Artificial Immune System (ICARIS), UK (2002)

    Google Scholar 

  8. Gonzalez, F., Dasgupta, D., Gomez, J.: The Effect of Binary Matching Rules in Negative Selection. In: Genetic and Evolutionary Computation Conference (GECCO), Chicago (2003)

    Google Scholar 

  9. Gonzalez, F., Dasgupta, D., Nino, L.F.: A Randomized Rea-Valued Negative Selection Algorithm. In: 2nd International Conference on Artificial Immune System (ICARIS), UK (2003)

    Google Scholar 

  10. Gonzalez, F., Dasgupta, D.: Anomaly Detection Using Real-Valued Negative Selection. Genetic Programming and Evolvable Machine 4, 383–403 (2003)

    Article  Google Scholar 

  11. Ceong, H.T., et al.: Complementary Dual Detectors for Effective Classification. In: 2nd International Conference on Artificial Immune System (ICARIS), UK (2003)

    Google Scholar 

  12. Kim, J., et al.: An evaluation of negative selection in an artificial immune system for network intrusion detection. In: Proceedings Genetic and Evolutionary Computation Conference (GECCO), San Francisco (2001)

    Google Scholar 

  13. Dasgupta, D., et al.: MILA - Multilevel Immune Learning Algorithm. Genetic and Evolutionary Computation Conference (GECCO), Chicago (2003)

    Google Scholar 

  14. Ji, Z.: Multilevel Negative/Positive Selection in Real-Valued Space, Research Report, The University of Memphis (December 21, 2003)

    Google Scholar 

  15. StatLib - Datasets Archive, http://lib.stat.cmu.edu//dataset/

  16. Structural Integrity and Damage Assessment Network, Public Datasets, www.brunel.ac.uk/researcli/cnca/sida/html/data.html

  17. Paul Bourke, Analysis, http://astronomy.swin.edu.au/~pbourke/analysis/

  18. Interstellar Research, FFT Windowing http://www.daqarta.com/ww00wndo.htm

  19. Institute for Communications Engineering, Higher-order Statistical Moments, http://speedy.et.unibw-muenchen.de/forsch/ut/moment/

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2004 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Ji, Z., Dasgupta, D. (2004). Real-Valued Negative Selection Algorithm with Variable-Sized Detectors. In: Deb, K. (eds) Genetic and Evolutionary Computation – GECCO 2004. GECCO 2004. Lecture Notes in Computer Science, vol 3102. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-24854-5_30

Download citation

  • DOI: https://doi.org/10.1007/978-3-540-24854-5_30

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-22344-3

  • Online ISBN: 978-3-540-24854-5

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics