Skip to main content

Elliptic Curves with a Given Number of Points

  • Conference paper

Part of the Lecture Notes in Computer Science book series (LNCS,volume 3076)

Abstract

We present a non-archimedean method to construct, given an integer N≥1, a finite field F q and an elliptic curve E/F q such that E(F q ) has order N.

This is a preview of subscription content, access via your institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • DOI: 10.1007/978-3-540-24847-7_8
  • Chapter length: 15 pages
  • Instant PDF download
  • Readable on all devices
  • Own it forever
  • Exclusive offer for individuals only
  • Tax calculation will be finalised during checkout
eBook
USD   109.00
Price excludes VAT (USA)
  • ISBN: 978-3-540-24847-7
  • Instant PDF download
  • Readable on all devices
  • Own it forever
  • Exclusive offer for individuals only
  • Tax calculation will be finalised during checkout
Softcover Book
USD   149.99
Price excludes VAT (USA)

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Bröker, R.: Thesis, Universiteit Leiden (in preparation)

    Google Scholar 

  2. Cohen, H.: A course in computational algebraic number theory. Graduate Texts in Mathematics 138 (1993)

    Google Scholar 

  3. Couveignes, J.-M., Henocq, T.: Action of modular correspondences around CM points. In: Fieker, C., Kohel, D.R. (eds.) ANTS 2002. LNCS, vol. 2369, pp. 234–243. Springer, Heidelberg (2002)

    CrossRef  Google Scholar 

  4. Gee, A.: Class invariants by Shimura’s reciprocity law. Journal de Théorie des Nombres de Bordeaux 11, 45–72 (1999)

    MATH  MathSciNet  Google Scholar 

  5. Kedlaya, K.: Counting Points on Hyperelliptic Curves using Monsky-Washnitzer Cohomology. Journal Ramanujan Mathematical Society 16, 323–338 (2002)

    MathSciNet  Google Scholar 

  6. Lang, S.: Elliptic functions, 2nd edn. Graduate Texts in Mathematics, vol. 112 (1987)

    Google Scholar 

  7. Satoh, T.: The canonical lift of an ordinary elliptic curve over a finite field and its point counting. Journal Ramanujan Mathematical Society 15, 247–270 (2000)

    MATH  MathSciNet  Google Scholar 

  8. Schoof, R.: Elliptic Curves over Finite Fields and the Computation of Square Roots mod p. Mathematics of Computation 44, 483–494 (1985)

    MATH  MathSciNet  Google Scholar 

  9. Schoof, R.: Counting points on elliptic curves over finite fields. Journal de Théorie des Nombres de Bordeaux 7, 219–254 (1995)

    MATH  MathSciNet  Google Scholar 

  10. Stevenhagen, P.: Hilbert’s 12th problem, complex multiplication and Shimura reciprocity. Class field theory—its centenary and prospect (Tokyo, 1998) Adv. Stud. Pure Math., Math. Soc. Japan 30, 161–176 (2001)

    MathSciNet  Google Scholar 

  11. Vélu, J.: Isogénies entre courbes elliptiques. C.R. Math. Acad. Sc. Paris 273, 238–241 (1971)

    MATH  Google Scholar 

  12. Weber, H.: Lehrbuch der Algebra, Vol. III. Chelsea reprint, original edn. (1908)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and Permissions

Copyright information

© 2004 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Bröker, R., Stevenhagen, P. (2004). Elliptic Curves with a Given Number of Points. In: Buell, D. (eds) Algorithmic Number Theory. ANTS 2004. Lecture Notes in Computer Science, vol 3076. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-24847-7_8

Download citation

  • DOI: https://doi.org/10.1007/978-3-540-24847-7_8

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-22156-2

  • Online ISBN: 978-3-540-24847-7

  • eBook Packages: Springer Book Archive