On L–Fuzzy Rough Sets

  • Anna Maria Radzikowska
  • Etienne E. Kerre
Part of the Lecture Notes in Computer Science book series (LNCS, volume 3070)


In this paper we introduce a new class of algebras, called extended residuated lattices. Basing on this structure we present an algebraic generalization of approximation operators and rough sets determined by abstract counterparts of fuzzy logical operations. We show formal properties of these structures taking into account several classes of fuzzy relations.


Residuated Lattice Fuzzy Relation Triangular Norm Fuzzy Equivalence Relation Fuzzy Implication 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Blount, K., Tsinakis, C.: The structure of residuated lattices. Int. J. of Algebra Comput. 13(4), 437–461 (2003)zbMATHCrossRefMathSciNetGoogle Scholar
  2. 2.
    Dilworth, R.P., Ward, N.: Residuated lattices. Transactions of the American Mathematical Society 45, 335–354 (1939)zbMATHMathSciNetCrossRefGoogle Scholar
  3. 3.
    Dubois, D., Prade, H.: Rough Fuzzy Sets and Fuzzy Rough Sets. Int. J. of General Systems 17(2-3), 191–209 (1990)zbMATHCrossRefGoogle Scholar
  4. 4.
    Düntsch, I.: Private communication (2003)Google Scholar
  5. 5.
    Goguen, J.A.: L–fuzzy sets. Journal of Mathematical Analysis and Applications 18, 145–174 (1967)zbMATHCrossRefMathSciNetGoogle Scholar
  6. 6.
    Klir, G.J., Yuan, B.: Fuzzy Logic: Theory and Applications. Prentice–Hall, Englewood Cliffs (1995)zbMATHGoogle Scholar
  7. 7.
    Nanda, S., Majumdar, S.: Fuzzy rough sets. Fuzzy Sets and Systems 45, 157–160 (1992)zbMATHCrossRefMathSciNetGoogle Scholar
  8. 8.
    Orłowska, E. (ed.): Incomplete Information: Rough Set Analysis. Physica–Verlag, Heidelberg (1998)Google Scholar
  9. 9.
    Pal, S.K., Skowron, A.: Rough Fuzzy Hybridization: A New Trend in Decision Making. Springer, Heidelberg (1999)zbMATHGoogle Scholar
  10. 10.
    Pawlak, Z.: Rough sets. Int. Journal of Computer and Information Science 11(5), 341–356 (1982)zbMATHCrossRefMathSciNetGoogle Scholar
  11. 11.
    Pawlak, Z.: Rough Sets – Theoretical Aspects of Reasoning about Data. Kluwer Academic Publishers, Dordrecht (1991)zbMATHGoogle Scholar
  12. 12.
    Polkowski, L., Skowron, A. (eds.): Rough Sets in Knowledge Discovery. Physica–Verlag, Heidelberg (1998)Google Scholar
  13. 13.
    Radzikowska, A.M., Kerre, E.E.: Fuzzy Rough Sets Revisited. In: Proceedings of Eufit 1999 (1999), published on CDGoogle Scholar
  14. 14.
    Radzikowska, A.M., Kerre, E.E.: A comparative study of fuzzy rough sets. Fuzzy Sets and Systems 126, 137–155 (2002)zbMATHCrossRefMathSciNetGoogle Scholar
  15. 15.
    Radzikowska, A.M., Kerre, E.E.: Fuzzy rough sets based on residuated lattices (2003) (submitted)Google Scholar
  16. 16.
    Słowiński, R. (ed.): Decision Support by Experience – Applications of the Rough Set Theory. Kluwer Academic Publishers, Dordrecht (1992)Google Scholar
  17. 17.
    Thiele, H.: On the definition of modal operators in fuzzy logic. In: Proceedings of ISMVL 1993, pp. 62–67 (1993)Google Scholar
  18. 18.
    Thiele, H.: Fuzzy Rough Sets versus Rough Fuzzy Sets – An Interpretation and a Comparative Study using Concepts of Modal Logics. In: Proceedings of EUFIT 1997, pp. 159–167 (1998)Google Scholar
  19. 19.
    Turunen, E.: Mathematics Behind Fuzzy Logics. Physica–Verlag, Heidelberg (1999)Google Scholar
  20. 20.
    Wu, W.-Z., Mi, J.-S., Zhang, W.-X.: Generalized fuzzy rough sets. Information Sciences 151, 263–282 (2003)zbMATHCrossRefMathSciNetGoogle Scholar
  21. 21.
    Zadeh, L.A.: Fuzzy Sets. Information and Control 8, 338–358 (1965)zbMATHCrossRefMathSciNetGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2004

Authors and Affiliations

  • Anna Maria Radzikowska
    • 1
  • Etienne E. Kerre
    • 2
  1. 1.System Research InstitutePolish Academy of ScienceWarsawPoland
  2. 2.Dept. of Applied Mathematics and Computer ScienceGhent UniversityGentBelgium

Personalised recommendations