Skip to main content

Relations and GUHA-Style Data Mining II

  • Conference paper
  • 306 Accesses

Part of the Lecture Notes in Computer Science book series (LNCS,volume 3051)

Abstract

The problem of representability of a (finite) Boolean algebra with an additional binary relation by a data matrix (information structure) and a binary generalized quantifier is studied for various classes of (associational) quantifiers. The computational complexity of the problem for the class of all associational quantifiers and for the class of all implicational quantifiers is determined and the problem is related to (generalized) threshold functions and (positive) assumability.

This is a preview of subscription content, access via your institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • DOI: 10.1007/978-3-540-24771-5_14
  • Chapter length: 8 pages
  • Instant PDF download
  • Readable on all devices
  • Own it forever
  • Exclusive offer for individuals only
  • Tax calculation will be finalised during checkout
eBook
USD   74.99
Price excludes VAT (USA)
  • ISBN: 978-3-540-24771-5
  • Instant PDF download
  • Readable on all devices
  • Own it forever
  • Exclusive offer for individuals only
  • Tax calculation will be finalised during checkout
Softcover Book
USD   99.00
Price excludes VAT (USA)

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Düntsch, I., Orłowska, E.: Beyond modalities: Sufficiency and mixed algebras. In: Orlowska, et al. (eds.) Relational methods for computer science applications, pp. 263–286. Physica Verlag, Heidelberg (2001)

    Google Scholar 

  2. Hájek, P., Havel, I., Chytil, M.: The GUHA method of automatic hypotheses determination. Computing 1, 293–308 (1966)

    MATH  CrossRef  Google Scholar 

  3. Hájek, P., Havránek, T.: Mechanizing Hypothesis Formation (Mathematical Foundations for a General Theory), p. 396. Springer, Heidelberg (1978), Free internet version: www.cs.cas.cz/hajek/guhabook

    MATH  Google Scholar 

  4. Hájek, P., Sochorová, A., Zvárová, J.: GUHA for personal computers. Comp. Stat., Data Arch. 19, 149–153

    Google Scholar 

  5. Hájek, P.: Relations in GUHA style data mining. In: Proc. Relmics 6, Tilburg, The Netherlands, pp. 91–96

    Google Scholar 

  6. Hájek, P.: The GUHA method and mining association rules. In: Proc. CIMA 2001, Bangor, Wales, pp. 533–539 (2001)

    Google Scholar 

  7. Hájek, P., Holeňa, M.: Formal logics of discovery and hypothesis formation by machine. Theoretical Computer 292, 345–357 (2003)

    MATH  CrossRef  Google Scholar 

  8. Hájek, P.: On generalized quantifiers, finite sets and data mining. In: Klopotek, et al. (eds.) Intelligent Information Processing and Data Mining, pp. 489–496. Physica Verlag, Heidelberg (2003)

    Google Scholar 

  9. Muroga, S.: Threshold logic and its applications. Wiley, Chichester (1971)

    MATH  Google Scholar 

  10. Rauch, J., Šimůnek, M.: Mining for 4ft association rules. In: Morishita, S., Arikawa, S. (eds.) DS 2000. LNCS (LNAI), vol. 1967, pp. 268–272. Springer, Heidelberg (2000)

    CrossRef  Google Scholar 

  11. Rauch, J.: Interesting Association Rules and Multi-relational Association Rules. Communications of Institute of Information and Computing Machinery 5(2), 77–82 (2002)

    MathSciNet  Google Scholar 

  12. Servedio, R.A.: Probabilistic construction of monotone formulae for positive linear threshold functions (1999) unpublished manuscript from see http://citeseer.nj.nec.com/354927.html

  13. GUHA+– project web site, http://www.cs.cas.cz/ics/software.html

  14. http://lispminer.vse.cz

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and Permissions

Copyright information

© 2004 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Hájek, P. (2004). Relations and GUHA-Style Data Mining II. In: Berghammer, R., Möller, B., Struth, G. (eds) Relational and Kleene-Algebraic Methods in Computer Science. RelMiCS 2003. Lecture Notes in Computer Science, vol 3051. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-24771-5_14

Download citation

  • DOI: https://doi.org/10.1007/978-3-540-24771-5_14

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-22145-6

  • Online ISBN: 978-3-540-24771-5

  • eBook Packages: Springer Book Archive