The Effects of Network Topology on Epidemic Algorithms

  • Jesús Acosta-Elías
  • Ulises Pineda
  • Jose Martin Luna-Rivera
  • Enrique Stevens-Navarro
  • Isaac Campos-Canton
  • Leandro Navarro-Moldes
Part of the Lecture Notes in Computer Science book series (LNCS, volume 3046)

Abstract

Epidemic algorithms can propagate information in a large scale network, that changes arbitrarily, in a self-organizing way. This type of spreading process allows rapid dissemination of information to all network nodes. However, the dynamics of epidemic algorithms can be strongly influenced by the network topology. In this paper, numerical simulations are used to illustrate such influences. We address networks with simple topologies for simplicity and in order to isolate other effects that occur in more complex networks.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Adya, A.: Weak Consistency: A Generalized Theory and Optimistic Implementations for Distributed Transactions, PhD thesis M. I. T., Department of Electrical Engineering and Computer Science (March 1999)Google Scholar
  2. 2.
    Foster, I., Kesselman, C., Tuecke, S.: The Anatomy of the Grid: Enabling Scalable Virtual Organizations International J. Supercomputer Applications 15(3) (2001)Google Scholar
  3. 3.
    Golding, R.A.: ”Weak-Consistency Group Communication and Membership”, PhD thesis, University of California, Santa Cruz, Computer and Information Sciences Technical Report UCSC-CRL-92-52 (December 1992)Google Scholar
  4. 4.
    Guy, R., Heidemann, J., Mak, W., Page Jr., T., Popek, G., Rothmeier, D.: Implementation of the Ficus Replicated File System. In: Proceedings Summer USENIX Conf. (June 1990)Google Scholar
  5. 5.
    Holliday, J., Agrawal, D., El Abbadi, A.: Partial Database Replication using Epidemic Communication. In: Proceedings of the 22 nd International Conference on Distributed Computing Systems, ICDCS 2002 (2002)Google Scholar
  6. 6.
    Kantor, B.: Phil Lapsley RFC0977 (1986), http://www.ietf.org/rfc/rfc0977.txt
  7. 7.
    Li, L., Halpern, J., Hass, Z.J.: Gossip-based ad hoc routing. In: Proceedings of Infocom, pp. 1707–1716 (2002)Google Scholar
  8. 8.
    The Network Simulator: http://www.isi.edu/nsnam/ns/
  9. 9.
    Petersen, K., Spreitzer, M.J., Terry, D.B., Theimer, M.M., Demers: Flexible Update Propagation for Weakly Consistent Replication. In: Proceedings of the 16th ACM Symposium on Operating Systems Principles (SOSP-16), Saint Malo, France, October 5-8, pp. 288–301 (1997)Google Scholar
  10. 10.
    Satyanarayanan, M.: Scalable, Secure, and Highly Available Distributed File. IEEE Computer 23(5) (May 1990)Google Scholar
  11. 11.
    Schroeder, M.D., Birrel, A.D., Needham, R.M.: Experience with Grapevine: The Growth of a Distributed System. ACM Transactions of Computer Systems 2(1), 3–23 (1984)CrossRefGoogle Scholar
  12. 12.
    Pastor-Satorras, R., Vespignant, A.: Epidemic Spreading in Scale Free Networks. Physica Review Letters 86 (2001)Google Scholar
  13. 13.
    Willinger, W., Govindan, R., Jamin, S., Paxson, V., Shenker, S.: Scaling phenomena in the Internet: Critically examining criticality. PNAS 99(suppl.), 2573–2580 (2002)CrossRefGoogle Scholar
  14. 14.
    Pool, I., Kochen, M.: Contacts and influence. Social Networks 1(5), 51 (1978)Google Scholar
  15. 15.
    Wu, F., Huberman, B.A., Adamic, L.A., Tyler, J.R.: Information Flow in Social Groups. annual CNLS conference on Networks, Santa Fe, NM, May 12 (2003), http://www.hpl.hp.com/shl/papers/flow/
  16. 16.
    Cuenca-Acuna, F.M., Peery, C., Martin, R.P., Nguyen, T.D.: PlanetP: Using Gossiping to Build Content Addressable Peer-to-Peer Information Sharing Communities. In: Proc. of the IEEE International Symposium on High Performance Distributed Computing (HPCD 12), Seattle, WA (June 2003)Google Scholar
  17. 17.
    Ganesh, A., Kermarrec, A., Massoulie, L.: Peer-to-Peer Membership Management for Gossip-based Protocols. IEEE Trans. Comp. 52(2), 139–149 (2003)CrossRefGoogle Scholar
  18. 18.
    Obraczka, K.: Massively Replicating Services in Wide Area Internetworks, PhD dissertation, Computer Science Department, University of Southern California (December 1994)Google Scholar
  19. 19.
    Lamport, L.: Time, clocks, and the ordering of events in a distributed system. Communications of the ACM 21(7), 558 (1978)MATHCrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2004

Authors and Affiliations

  • Jesús Acosta-Elías
    • 1
  • Ulises Pineda
    • 1
  • Jose Martin Luna-Rivera
    • 1
  • Enrique Stevens-Navarro
    • 1
  • Isaac Campos-Canton
    • 1
  • Leandro Navarro-Moldes
    • 2
  1. 1.Facultad de CienciasUniversidad Autonoma de, San Luis PotosíSan Luis Potosí, S.L.P.México
  2. 2.Universitat Politécnica de CatalunyaBarcelonaSpain

Personalised recommendations