Comparison and Selection of Exact and Heuristic Algorithms

  • Joaquín Pérez O.
  • Rodolfo A. Pazos R.
  • Juan Frausto S.
  • Guillermo Rodríguez O.
  • Laura Cruz R.
  • Héctor Fraire H.
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 3045)


The traditional approach for comparing heuristic algorithms uses well-known statistical tests for meaningfully relating the empirical performance of the algorithms and concludes that one outperforms the other. In contrast, the method presented in this paper, builds a predictive model of the algorithms behavior using functions that relate performance to problem size, in order to define dominance regions. This method generates first a representative sample of the algorithms performance, then using a common and simplified regression analysis determines performance functions, which are finally incorporated into an algorithm selection mechanism. For testing purposes, a set of same-class instances of the database distribution problem was solved using an exact algorithm (Branch&Bound) and a heuristic algorithm (Simulated Annealing). Experimental results show that problem size affects differently both algorithms, in such a way that there exist regions where one algorithm is more efficient than the other.


Heuristic Algorithm Performance Function Problem Size Algorithm Performance Large Instance 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Ahuja, R.K., Kumar, A., Jha, K.: Exact and Heuristic Algorithms for the Weapon Target Assignment Problem. Submitted to Operation Research (2003)Google Scholar
  2. 2.
    Papadimitriou, C., Steiglitz, K.: Combinatorial Optimization: Algorithms and Complexity. Prentice-Hall, New Jersey (1982)zbMATHGoogle Scholar
  3. 3.
    Borghetti, B.J.: Inference Algorithm Performance and Selection Under Contrained Resources. MS Thesis, AFIT/GCS/ENG/96D-05 (1996)Google Scholar
  4. 4.
    Hooker, J.N.: Testing Heuristics: We Have it All Wrong. Journal of Heuristics (1996)Google Scholar
  5. 5.
    Hoos, H.H., Stutzle, T.: Systematic vs. Local Search for SAT. Journal of Automated Reasoning 24, 421–481 (2000)zbMATHCrossRefGoogle Scholar
  6. 6.
    Gent, I.P., MacIntyre, E., Prosser, P., Walsh, T.: The Scaling of Search Cost. In: Proceedings of AAAI 1997, pp. 315–320. MIT Press, Cambridge (1997)Google Scholar
  7. 7.
    Pérez, J., Pazos, R.A., Romero, D., Santaolaya, R., Rodríguez, G., Sosa, V.: Adaptive and Scalable Allocation of Data-Objects in the Web. In: Kumar, V., Gavrilova, M.L., Tan, C.J.K., L’Ecuyer, P. (eds.) ICCSA 2003. LNCS, vol. 2667, pp. 134–143. Springer, Heidelberg (2003)CrossRefGoogle Scholar
  8. 8.
    Pérez, J., Pazos, R.A., Romero, C.L.: Análisis de Complejidad del Problema de la Fragmentación Vertical y Reubicación Dinámica en Bases de Datos Distribuidas. In: 7th International Congress on Computer Science Research, México, pp. 63–70 (2000)Google Scholar
  9. 9.
    Morales, L., Garduño, R., Romero, D.: The Multiple-minima Problem in Small Peptides Revisted, the Threshold Accepting Approach. Journal of Biomelecular Structure & Dynamics 9(5), 951–957 (1992)Google Scholar
  10. 10.
    Pérez, J., Pazos, R.A., Vélez, L., Rodríguez, G.: Automatic Generation of Control Parameters for the Threshold Accepting Algorithm. In: Coello Coello, C.A., de Albornoz, Á., Sucar, L.E., Battistutti, O.C. (eds.) MICAI 2002. LNCS (LNAI), vol. 2313, pp. 119–127. Springer, Heidelberg (2002)Google Scholar
  11. 11.
    Cruz, L.: Automatización del Diseño de la Fragmentación Vertical y Ubicación en Bases de Datos Distribuidas Usando Métodos Heurísticos y Exactos. M.S. thesis, Instituto Tecnológico y de Estudios Superiores de Monterrey (1999)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2004

Authors and Affiliations

  • Joaquín Pérez O.
    • 1
  • Rodolfo A. Pazos R.
    • 1
  • Juan Frausto S.
    • 2
  • Guillermo Rodríguez O.
    • 3
  • Laura Cruz R.
    • 4
  • Héctor Fraire H.
    • 4
  1. 1.Centro Nacional de Investigación y Desarrollo Tecnológico (CENIDET)CuernavacaMéxico
  2. 2.ITESMCampus Cuernavaca, MéxicoCuernavacaMéxico
  3. 3.Instituto de Investigaciones EléctricasIIE 
  4. 4.Instituto Tecnológico de Ciudad MaderoMéxico

Personalised recommendations