Skip to main content

Abstraction by Projection and Application to Multi-affine Systems

  • Conference paper

Part of the book series: Lecture Notes in Computer Science ((LNCS,volume 2993))

Abstract

In this paper we present an abstraction method for nonlinear continuous systems. The main idea of our method is to project out some continuous variables, say z, and treat them in the dynamics of the remaining variables x as uncertain input. Therefore, the dynamics of x is then described by a differential inclusion. In addition, in order to avoid excessively conservative abstractions, the domains of the projected variables are divided into smaller regions corresponding to different differential inclusions. The final result of our abstraction procedure is a hybrid system of lower dimension with some important properties that guarantee convergence results. The applicability of this abstraction approach depends on the ability to deal with differential inclusions. We then focus on uncertain bilinear systems, a simple yet useful class of nonlinear differential inclusions, and develop a reachability technique using optimal control. The combination of the abstraction method and the reachability analysis technique for bilinear systems allows to treat multi-affine systems, which is illustrated with a biological system.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Alexander, J.C., Seidman, T.I.: Sliding modes in intersecting switching surfaces. Houston J. Math. 24, 545–569 (1994)

    MathSciNet  Google Scholar 

  2. Alur, R., Dang, T., Ivancic, F.: Reachability Analysis Via Predicate Abstraction. In: Tomlin, C.J., Greenstreet, M.R. (eds.) HSCC 2002. LNCS, vol. 2289, Springer, Heidelberg (2002)

    Chapter  Google Scholar 

  3. Asarin, E., Bournez, O., Dang, T., Maler, O.: Approximate Reachability Analysis of Piecewise-Linear Dynamical Systems. In: Lynch, N.A., Krogh, B.H. (eds.) HSCC 2000. LNCS, vol. 1790, Springer, Heidelberg (2000)

    Chapter  Google Scholar 

  4. Asarin, E., Dang, T., Girard, A.: Reachability Analysis of Nonlinear Systems Using Conservative Approximation. In: Maler, O., Pnueli, A. (eds.) HSCC 2003. LNCS, vol. 2623, Springer, Heidelberg (2003)

    Chapter  Google Scholar 

  5. Asarin, E., Dang, T., Maler, O.: d/dt: A tool for Verification of Hybrid Systems. In: Computer Aided Verification. LNCS, Springer, Heidelberg (2002)

    Google Scholar 

  6. Aubin, J.P., Cellina, A.: Differential Inclusions: Set-valued Maps and Viability Theory. Springer, Heidelberg (1984)

    MATH  Google Scholar 

  7. Belta, C., Habets, L.C.G.J.M., Kumar, V.: Control of multi-affine systems on rectangles with an application to gene transcription control. In: Proc. of CDC (2003)

    Google Scholar 

  8. Bensalem, S., Lakhnech, Y., Owre, S.: Computing Abstractions of Infinite State Systems Compositionally and Automatically. In: Y. Vardi, M. (ed.) CAV 1998. LNCS, vol. 1427, Springer, Heidelberg (1998)

    Google Scholar 

  9. Chutinan, A., Krogh, B.H.: Verification of Polyhedral Invariant Hybrid Automata Using Polygonal F low Pipe Approximations. In: Vaandrager, F.W., van Schuppen, J.H. (eds.) HSCC 1999. LNCS, vol. 1569, Springer, Heidelberg (1999)

    Chapter  Google Scholar 

  10. Cousot, P., Cousot, R.: Abstract Interpretation and Application to Logic Programs. Journal of Logic Programming, 103–179 (1992)

    Google Scholar 

  11. Dang, T.: Reachability Analysis of Bilinear Systems. Tech. report IMAG (2003)

    Google Scholar 

  12. Deimling, K.: Multivalued Differential Equations. De Gruyter, Berlin (1992)

    MATH  Google Scholar 

  13. Donchev, T., Farkhi, E.: Stability and Euler approximation of one-sided Lipschitz differential inclusions. SIAM Journal of Control and Optimization 36(2), 780–796 (2000)

    Article  MathSciNet  Google Scholar 

  14. Filippov, A.F.: Diff. Equations with Discontinuous Righthand Sides. Kluwer, Dordrecht (1988)

    Google Scholar 

  15. Girard, A.: Detection of Event Occurence in Piecewise Linear Hybrid Systems. In: Proc. RASC 2002, Nottingham, UK (December 2002)

    Google Scholar 

  16. Greenstreet, M.R., Mitchell, I.: Reachability Analysis Using Polygonal Projections. In: Vaandrager, F.W., van Schuppen, J.H. (eds.) HSCC 1999. LNCS, vol. 1569, Springer, Heidelberg (1999)

    Chapter  Google Scholar 

  17. Hämmerlin, G., Hoffmann, K.: Numerical Mathematics. Springer, Heidelberg (1991)

    Google Scholar 

  18. Henzinger, T.A., Ho, P.-H., Wong-Toi, H.: Analysis of Nonlinear Hybrid Systems. IEEE Transactions on Automatic Control 43, 540–554 (1998)

    Article  MATH  MathSciNet  Google Scholar 

  19. Kirschner, D., Lenhart, S., Serbin, S.: Optimal control of the chemotherapy of HIV. Journal of Mathematival Biology 35, 775–792 (1997)

    Article  MATH  MathSciNet  Google Scholar 

  20. Kurzhanski, A., Varaiya, P.: Ellipsoidal Techniques for Reachability Analysis. In: Lynch, N.A., Krogh, B.H. (eds.) HSCC 2000. LNCS, vol. 1790, Springer, Heidelberg (2000)

    Chapter  Google Scholar 

  21. Kurzhanski, A., Varaiya, P.: Dynamic optimization for reachability problems. JOTA 108(2), 227–251 (2001)

    Article  MathSciNet  Google Scholar 

  22. Lafferriere, G., Pappas, G., Yovine, S.: Reachability computation for linear systems. In: Proc. of the 14th IFAC World Congress, pp. 7–12 E (1999)

    Google Scholar 

  23. Ledzewicz, U., Schättler, H.: Optimal control for 3-compartment model for cancer chemotherapy with quadratic objective. In: Proc. of the 4th Int Conf on Dynamical Systems and Differential Equations, Wilmington, NC (2002)

    Google Scholar 

  24. Mitchell, I., Tomlin, C.: Level Set Method for Computation in Hybrid Systems. In: Lynch, N.A., Krogh, B.H. (eds.) HSCC 2000. LNCS, vol. 1790, Springer, Heidelberg (2000)

    Chapter  Google Scholar 

  25. Mohler, R.R.: Nonlinear Systems, vol. 2. Prentice-Hall, Inc., Englewood Cliffs (1991)

    Google Scholar 

  26. Pappas, G.J.: Bisimilar linear systems. In: Automatica (2003)

    Google Scholar 

  27. Pontryagin, L.S., Boltyanskii, V.G., Gamkrelidze, R.V., Mischenko, E.F.: The Mathematical Theory of Optimal Processes. Pergamon Press, Oxford (1964)

    MATH  Google Scholar 

  28. Puri, A., Varaiya, P.: Verification of Hybrid Systems using Abstraction. In: Antsaklis, P.J., Kohn, W., Nerode, A., Sastry, S.S. (eds.) HS 1994. LNCS, vol. 999, Springer, Heidelberg (1995)

    Google Scholar 

  29. Saint-Pierre, P.: Approximation of Viability Kernels and Capture Basin for Hybrid Systems. In: Proc. of European Control Conf. ECC 2001, pp. 2776–2783 (2001)

    Google Scholar 

  30. Sarychev, A.: Time-optimality of bang-bang controls for chained systems. In: Proc. of 2nd IFAC Workshop on Lagrangian and Hamiltonian Methods for Nonlinear Control (2003)

    Google Scholar 

  31. Tabuada, P., Pappas, G.: Model-Checking LTL over controllable linear systems is decidable. In: Maler, O., Pnueli, A. (eds.) HSCC 2003. LNCS, vol. 2623, Springer, Heidelberg (2003)

    Chapter  Google Scholar 

  32. Tiwari, A., Khanna, G.: Series of Abstractions for Hybrid Automata. In: Tomlin, C.J., Greenstreet, M.R. (eds.) HSCC 2002. LNCS, vol. 2289, Springer, Heidelberg (2002)

    Chapter  Google Scholar 

  33. Tomlin, C., Lygeros, J., Sastry, S.: A Game-Theoretic Approach to Controller Design for Hybrid Systems. Proc. of the IEEE 88, 940–970 (2000)

    Article  Google Scholar 

  34. Utkin, V.I.: Sliding Modes and their Application in Variable Structure Systems. Mir, Moscow (1978)

    MATH  Google Scholar 

  35. Varaiya, P.: Reach Set Computation using Optimal Control. In: Proc. KIT Workshop, Grenoble (1998)

    Google Scholar 

  36. Veliov, V.: On the time-discretization of control systems. SIAM journal on Control and Optimization 35(5), 1468–1470 (1997)

    Article  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2004 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Asarin, E., Dang, T. (2004). Abstraction by Projection and Application to Multi-affine Systems. In: Alur, R., Pappas, G.J. (eds) Hybrid Systems: Computation and Control. HSCC 2004. Lecture Notes in Computer Science, vol 2993. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-24743-2_3

Download citation

  • DOI: https://doi.org/10.1007/978-3-540-24743-2_3

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-21259-1

  • Online ISBN: 978-3-540-24743-2

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics