Behavioral and Spatial Observations in a Logic for the π-Calculus

  • Luís Caires
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 2987)


In addition to behavioral properties, spatial logics can talk about other key properties of concurrent systems such as secrecy, freshness, usage of resources, and distribution. We study an expressive spatial logic for systems specified in the synchronous π-calculus with recursion, based on a small set of behavioral and spatial observations. We give coinductive and equational characterizations of the equivalence induced on processes by the logic, and conclude that it strictly lies between structural congruence and strong bisimulation. We then show that model-checking is decidable for a useful class of processes that includes the finite-control fragment of the π-calculus.


Process Variable Modal Logic Recursive Formula Propositional Variable Behavioral Modality 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


  1. 1.
    Amadio, R., Cardelli, L.: Subtyping recursive types. ACM Transactions on Programming Languages and Systems 15(4), 575–631 (1993)CrossRefGoogle Scholar
  2. 2.
    Caires, L.: A Model for Declarative Programming and Specification with Concurrency and Mobility. PhD thesis, Dept. de Informática, FCT, Universidade Nova de Lisboa (1999)Google Scholar
  3. 3.
    Caires, L., Cardelli, L.: A spatial logic for concurrency (Part II). In: Brim, L., Jančar, P., Křetínský, M., Kucera, A. (eds.) CONCUR 2002. LNCS, vol. 2421, p. 209. Springer, Heidelberg (2002)CrossRefGoogle Scholar
  4. 4.
    Caires, L., Cardelli, L.: A Spatial Logic for Concurrency (Part I). Information and Computation 186(2), 194–235 (2003)zbMATHCrossRefMathSciNetGoogle Scholar
  5. 5.
    Cardelli, L., Gardner, P., Ghelli, G.: Manipulating trees with hidden labels. In: Gordon, A.D. (ed.) FOSSACS 2003. LNCS, vol. 2620, pp. 216–232. Springer, Heidelberg (2003)CrossRefGoogle Scholar
  6. 6.
    Cardelli, L., Gordon, A.D.: Anytime, Anywhere. Modal Logics for Mobile Ambients. In: 27th ACM Symp. on Principles of Programming Languages, pp. 365–377. ACM, New York (2000)Google Scholar
  7. 7.
    Cardelli, L., Gordon, A.D.: Logical properties of name restriction. In: Abramsky, S. (ed.) TLCA 2001. LNCS, vol. 2044, p. 46. Springer, Heidelberg (2001)CrossRefGoogle Scholar
  8. 8.
    Charatonik, W., Gordon, A.D., Talbot, J.-M.: Finite-control mobile ambients. In: Le Métayer, D. (ed.) ESOP 2002. LNCS, vol. 2305, pp. 295–313. Springer, Heidelberg (2002)CrossRefGoogle Scholar
  9. 9.
    Charatonik, W., Talbot, J.-M.: The decidability of model-checking mobile ambients. In: Metayer, D. (ed.) ESOP 2002. LNCS, vol. 2305, Springer, Heidelberg (2002)CrossRefGoogle Scholar
  10. 10.
    Dal-Zilio, S.: Spatial congruence for ambients is decidable. In: He, J., Sato, M. (eds.) ASIAN 2000. LNCS, vol. 1961, pp. 365–377. Springer, Heidelberg (2000)Google Scholar
  11. 11.
    Dam, M.: Model checking mobile processes. Information and Computation 129(1), 35–51 (1996)zbMATHCrossRefMathSciNetGoogle Scholar
  12. 12.
    Dam, M.: Proof systems for π-calculus logics. In: de Queiroz (ed.) Logic for Concurrency and Synchronisation, Studies in Logic and Computation, Oxford University Press, Oxford (to appear)Google Scholar
  13. 13.
    Engelfriet, J., Gelsema, T.: Multisets and Structural Congruence of the π- calculus with Replication. Theoretical Computer Science (211), 311–337 (1999)Google Scholar
  14. 14.
    Gabbay, M., Pitts, A.: A New Approach to Abstract Syntax with Variable Binding. Formal Aspects of Computing 13(3-5), 341–363 (2002)zbMATHCrossRefGoogle Scholar
  15. 15.
    Ghelli, G., Conforti, G.: Decidability of freshness, undecidability of revelation. Technical Report 03–11, Dipartimento di Informatica, Universita di Pisa (2003)Google Scholar
  16. 16.
    Hirschkoff, D., Lozes, E., Sangiorgi, D.: Separability, Expressiveness and Decidability in the Ambient Logic. In: Proc. LICS, Copenhagen, Denmark, IEEE Computer Society, Los Alamitos (2002)Google Scholar
  17. 17.
    Hirschkoff, D., Lozes, É., Sangiorgi, D.: Minimality results for the spatial logics. In: Pandya, P.K., Radhakrishnan, J. (eds.) FSTTCS 2003. LNCS, vol. 2914, pp. 252–264. Springer, Heidelberg (2003)CrossRefGoogle Scholar
  18. 18.
    Ishtiaq, S., O’Hearn, P.: BI as an Assertion Language for Mutable Data Structures. In: 28th ACM Symp. on Principles of Programming Languages (2001)Google Scholar
  19. 19.
    Milner, R.: Communication and Concurrency. Prentice-Hall, Englewood Cliffs (1989)zbMATHGoogle Scholar
  20. 20.
    Milner, R.: Communicating and Mobile Systems: the π-calculus. CUP (1999)Google Scholar
  21. 21.
    Milner, R., Parrow, J., Walker, D.: Modal logics for mobile processes. Theoretical Computer Science 114, 149–171 (1993)zbMATHCrossRefMathSciNetGoogle Scholar
  22. 22.
    Montanari, U., Pistore, M.: Pi-Calculus, Structured Coalgebras, and Minimal HD-Automata. In: MFCS: Symp. on Mathematical Foundations of Computer Science, pp. 569–578 (2000)Google Scholar
  23. 23.
    O’Hearn, P., Pym, D.: The Logic of Bunched Implications. The Bulletin of Symbolic Logic 5(2), 215–243 (1999)zbMATHCrossRefMathSciNetGoogle Scholar
  24. 24.
    Sangiorgi, D.: Extensionality and Intensionality of the Ambient Logics. In: 28th Annual Symposium on Principles of Programming Languages, pp. 4–13. ACM, New York (2001)Google Scholar
  25. 25.
    Sangiorgi, D., Walker, D.: The π-calculus: A Theory of Mobile Processes. CUP (2001)Google Scholar
  26. 26.
    Winskel, G.: A note on model checking the modal ν-calculus. In: Ausiello, G., Dezani-Ciancaglini, M., Rocca, S.R.D. (eds.) ICALP 1989. LNCS, vol. 372, pp. 761–772. Springer, Heidelberg (1989)CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2004

Authors and Affiliations

  • Luís Caires
    • 1
  1. 1.Departamento de Informática, FCT/UNLPortugal

Personalised recommendations