Advertisement

Static Analysis of Digital Filters

  • Jérôme Feret
Part of the Lecture Notes in Computer Science book series (LNCS, volume 2986)

Abstract

We present an Abstract Interpretation-based framework for automatically analyzing programs containing digital filters. Our framework allows refining existing analyses so that they can handle given classes of digital filters. We only have to design a class of symbolic properties that describe the invariants throughout filter iterations, and to describe how these properties are transformed by filter iterations. Then, the analysis allows both inference and proofs of the properties about the program variables that are tied to any such filter.

Keywords

Digital Filter Generic Extension Input Stream Filter Iteration Output Stream 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

References

  1. 1.
    Blanchet, B., Cousot, P., Cousot, R., Feret, J., Mauborgne, L., Miné, A., Monniaux, D., Rival, X.: Design and implementation of a special-purpose static program analyzer for safety-critical real-time embedded software. In: Mogensen, T.Æ., Schmidt, D.A., Sudborough, I.H. (eds.) The Essence of Computation. LNCS, vol. 2566, pp. 85–108. Springer, Heidelberg (2002)CrossRefGoogle Scholar
  2. 2.
    Blanchet, B., Cousot, P., Cousot, R., Feret, J., Mauborgne, L., Miné, A., Monniaux, D., Rival, X.: A static analyzer for large safety-critical software. In: Proc. PLDI 2003. ACM Press, New York (2003)Google Scholar
  3. 3.
    Cousot, P., Cousot, R.: Abstract interpretation: a unified lattice model for static analysis of programs by construction or approximation of fixpoints. In: Proc. POPL 1977. ACM Press, New York (1977)Google Scholar
  4. 4.
    Cousot, P., Cousot, R.: Abstract interpretation frameworks. Journal of logic and computation 2(4) (August 1992)Google Scholar
  5. 5.
    Cousot, P., Halbwachs, N.: Automatic discovery of linear restraints among variables of a program. In: Proc. POPL 1978. ACM Press, New York (1978)Google Scholar
  6. 6.
    Karr, M.: Affine relationships among variables of a program. Acta Inf. (1976)Google Scholar
  7. 7.
    Lamb, A.A., Thies, W., Amarasinghe, S.P.: Linear analysis and optimisation of stream programs. In: Proc. PLDI 2003. ACM Press, New York (2003)Google Scholar
  8. 8.
    Leroy, X., Doligez, D., Garrigue, J., Rémy, D., Vouillon, J.: The Objective Caml system, documentation and user’s manual. Technical report, INRIA (2002)Google Scholar
  9. 9.
    Miné, A.: The octagon abstract domain. In: Proc. WCRE 2001(AST 2001). IEEE, Los Alamitos (2001)Google Scholar
  10. 10.
    Miné, A.: Relational abstract domains for the detection of floating-point run-time errors. In: Schmidt, D. (ed.) ESOP 2004. LNCS, vol. 2986, pp. 3–17. Springer, Heidelberg (2004)CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2004

Authors and Affiliations

  • Jérôme Feret
    • 1
  1. 1.DI, École Normale SupérieureParisFRANCE

Personalised recommendations