Advertisement

Relational Abstract Domains for the Detection of Floating-Point Run-Time Errors

  • Antoine Miné
Part of the Lecture Notes in Computer Science book series (LNCS, volume 2986)

Abstract

We present a new idea to adapt relational abstract domains to the analysis of IEEE 754-compliant floating-point numbers in order to statically detect, through Abstract Interpretation-based static analyses, potential floating-point run-time exceptions such as overflows or invalid operations. In order to take the non-linearity of rounding into account, expressions are modeled as linear forms with interval coefficients. We show how to extend already existing numerical abstract domains, such as the octagon abstract domain, to efficiently abstract transfer functions based on interval linear forms. We discuss specific fixpoint stabilization techniques and give some experimental results.

Keywords

Linear Form Interval Analysis Interval Arithmetic Relational Domain Abstract Domain 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

References

  1. 1.
    Aït Ameur, Y., Bel, G., Boniol, F., Pairault, S., Wiels, V.: Robustness analysis of avionics embedded systems. In: LCTES 2003, pp. 123–132. ACM Press, New York (2003)CrossRefGoogle Scholar
  2. 2.
    Bagnara, R., Ricci, E., Zaffanella, E., Hill, P.M.: Possibly not closed convex polyhedra and the Parma Polyhedra Library. In: Hermenegildo, M.V., Puebla, G. (eds.) SAS 2002. LNCS, vol. 2477, pp. 213–229. Springer, Heidelberg (2002)CrossRefGoogle Scholar
  3. 3.
    Blanchet, B., Cousot, P., Cousot, R., Feret, J., Mauborgne, L., Miné, A., Monniaux, D., Rival, X.: Design and implementation of a special-purpose static program analyzer for safety-critical real-time embedded software. In: Mogensen, T.Æ., Schmidt, D.A., Sudborough, I.H. (eds.) The Essence of Computation. LNCS, vol. 2566, pp. 85–108. Springer, Heidelberg (2002)CrossRefGoogle Scholar
  4. 4.
    Blanchet, B., Cousot, P., Cousot, R., Feret, J., Mauborgne, L., Miné, A., Monniaux, D., Rival, X.: A static analyzer for large safety-critical software. In: ACM PLDI 2003, vol. 548030, pp. 196–207. ACM Press, New York (2003)CrossRefGoogle Scholar
  5. 5.
    IEEE Computer Society. IEEE standard for binary floating-point arithmetic. Technical report, ANSI/IEEE Std 745-1985 (1985)Google Scholar
  6. 6.
    Cousot, P., Cousot, R.: Abstract interpretation: a unified lattice model for static analysis of programs by construction or approximation of fixpoints. In: ACM POPL 1977, pp. 238–252. ACM Press, New York (1977)Google Scholar
  7. 7.
    Cousot, P., Cousot, R.: Abstract interpretation frameworks. Journal of Logic and Computation 2(4), 511–547 (1992)zbMATHCrossRefMathSciNetGoogle Scholar
  8. 8.
    Cousot, P., Halbwachs, N.: Automatic discovery of linear restraints among variables of a program. In: ACM POPL 1978, pp. 84–97. ACM Press, New York (1978)Google Scholar
  9. 9.
    Feret, J.: Static analysis of digital filters. In: Schmidt, D. (ed.) ESOP 2004. LNCS, vol. 2986, pp. 33–48. Springer, Heidelberg (2004)CrossRefGoogle Scholar
  10. 10.
    Goldberg, D.: What every computer scientist should know about floating-point arithmetic. ACM Computing Surveys (CSUR) 23(1), 5–48 (1991)CrossRefGoogle Scholar
  11. 11.
    Goubault, É.: Static analyses of the precision of floating-point operations. In: Cousot, P. (ed.) SAS 2001. LNCS, vol. 2126, pp. 234–259. Springer, Heidelberg (2001)CrossRefGoogle Scholar
  12. 12.
    Kildall, G.: A unified approach to global program optimization. In: POPL 1973, pp. 194–206. ACM Press, New York (1973)CrossRefGoogle Scholar
  13. 13.
    Martel, M.: Static analysis of the numerical stability of loops. In: Hermenegildo, M.V., Puebla, G. (eds.) SAS 2002. LNCS, vol. 2477, pp. 133–150. Springer, Heidelberg (2002)CrossRefGoogle Scholar
  14. 14.
    Miné, A.: The octagon abstract domain. In: AST 2001 in WCRE 2001, IEEE, pp. 310–319. IEEE CS Press, Los Alamitos (2001)Google Scholar
  15. 15.
    Simon, A., King, A., Howe, J.: Two variables per linear inequality as an abstract domain. In: Leuschel, M. (ed.) LOPSTR 2002. LNCS, vol. 2664, pp. 71–89. Springer, Heidelberg (2003)CrossRefGoogle Scholar
  16. 16.
    Skeel, R.: Roundoff error and the Patriot missile. SIAM News 25(4), 11 (1992)Google Scholar
  17. 17.
    Vignes, J.: A survey of the CESTAC method. In: Bajard, J.-C. (ed.) Proc. of Real Numbers and Computer Conference (1996)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2004

Authors and Affiliations

  • Antoine Miné
    • 1
  1. 1.DI-École Normale Supérieure de ParisFrance

Personalised recommendations