Advertisement

Semantical Analysis of Specification Logic, 3

An Operational Approach
  • Dan R. Ghica
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 2986)

Abstract

We are presenting a semantic analysis of Reynolds’s specification logic of Idealized Algol using the parametric operational techniques developed by Pitts. We hope that this more elementary account will make the insights of Tennent and O’Hearn, originally formulated in a functor-category denotational semantics, more accessible to a wider audience. The operational model makes clearer the special nature of term equivalence in the logical setting, identifies some problems in the previous interpretation of negation and also proves the soundness of two new axioms of specification logic. Using the model we show that even a very restricted fragment of specification logic is undecidable.

References

  1. 1.
    Reynolds, J.C.: The Craft of Programming. Prentice-Hall Intl., London (1981)zbMATHGoogle Scholar
  2. 2.
    Reynolds, J.C.: Idealized Algol and its specification logic. In: Néel, D. (ed.) Tools and Notions for Program Construction, Nice, France, pp. 121–161. Cambridge University Press, Cambridge 1982 (1981); Also [7, Chap. 6]Google Scholar
  3. 3.
    Tennent, R.D.: Semantical analysis of specification logic. Information and Computation 85, 135–162 (1990); Also [7, Chap. 13]zbMATHCrossRefMathSciNetGoogle Scholar
  4. 4.
    Reynolds, J.C.: The essence of Algol. In: de Bakker, J.W., van Vliet, J.C. (eds.) Algorithmic Languages, Proceedings of the International Symposium on Algorithmic Languages, Amsterdam, pp. 345–372 (1981); Also [7, Chap. 3]Google Scholar
  5. 5.
    Oles, F.J.: Functor categories and store shapes. In: [7, Chap. 11], pp. 3–12Google Scholar
  6. 6.
    O’Hearn, P.W., Tennent, R.D.: Semantical analysis of specification logic, 2. Information and Computation 107, 25–57 (1993); Also [7, Chap. 19]zbMATHCrossRefMathSciNetGoogle Scholar
  7. 7.
    O’Hearn, P.W., Tennent, R.D. (eds.): Algol-like Languages. Progress in Theoretical Computer Science. Birkhäuser, Boston (1997), Two volumesGoogle Scholar
  8. 8.
    Pitts, A.M.: Reasoning about local variables with operationally-based logical relations. In: Proceedings of LICS 11, Washington, pp. 152–163 (1996); Also [7, Chap. 17]Google Scholar
  9. 9.
    O’Hearn, P.W.: The Semantics of Non-Interference: A Natural Approach. Ph.D. thesis, Queen’s University, Kingston, Canada (1990)Google Scholar
  10. 10.
    Launchbury, J., Peyton Jones, S.: State in Haskell. Lisp and Symbolic Computation 8, 293–341 (1995)CrossRefGoogle Scholar
  11. 11.
    Ghica, D.R., McCusker, G.: Reasoning about Idealized algol using regular languages. In: Welzl, E., Montanari, U., Rolim, J.D.P. (eds.) ICALP 2000. LNCS, vol. 1853, pp. 103–116. Springer, Heidelberg (2000)CrossRefGoogle Scholar
  12. 12.
    Ong, C.H.L.: Observational equivalence of third-order Idealized Algol is decidable. In: Proceedings of LICS 17, Copenhagen, pp. 22–25 (2002)Google Scholar
  13. 13.
    O’Hearn, P.W.: Note on Algol and conservatively extending functional programming. J. of Functional Programming 6, 171–180 (1995); Also [7, Chap. 4]CrossRefGoogle Scholar
  14. 14.
    Milner, R.: Fully abstract models of typed λ-calculi. Theoretical Computer Science 4, 1–22 (1977)zbMATHCrossRefMathSciNetGoogle Scholar
  15. 15.
    van Dalen, D.: Logic and Structure, 3rd edn. Springer, Berlin (1994)zbMATHGoogle Scholar
  16. 16.
    Bencivenga, E.: Free logics. In: Gabbay, D., Guenthner, F. (eds.) Handbook of Philosophical Logic, vol. III: Alternatives in Classical Logic. Synthese Library, vol. 166, pp. 373–426. D. Reidel, Dordrecht (1986)Google Scholar
  17. 17.
    Matiyasevich, Y.V.: Hilbert’s tenth Problem. Nauka Publishers, Fizmalit (1993), English translation: MIT Press, Cambridge, MA (1993)Google Scholar
  18. 18.
    Mason, I.A., Talcott, C.L.: References, local variables, and operational reasoning. In: Proceedings of LICS 7, Santa Cruz, California, pp. 186–197 (1992)Google Scholar
  19. 19.
    Honsell, F., Mason, I., Smith, S., Talcott, C.: A variable typed logic of effects. Information and Computation 119, 55–90 (1995)zbMATHCrossRefMathSciNetGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2004

Authors and Affiliations

  • Dan R. Ghica
    • 1
  1. 1.Oxford University Computing LaboratoryOxfordU.K.

Personalised recommendations