Skip to main content

A Useful Method for Multiple Sequence Alignment and Its Implementation

  • Conference paper
  • 598 Accesses

Part of the book series: Lecture Notes in Computer Science ((LNCS,volume 3043))

Abstract

Multiple sequence alignment is a useful tool to identify the relationships among protein sequences. Dynamic programming is the most widely used algorithm to obtain multiple sequence alignment with optimal cost. However, dynamic programming cannot be applied to certain cost function due to its drawback to produce an optimal multiple sequence alignment. We propose sub-alignment refinement algorithm to overcome this drawback and impelment this algorithm as a module of our MS Windows-based sequence alignment program which also implements other alignment algorithms and supports several sequence file formats.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   74.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Needleman, S.B., Wunch, C.D.: A general method applicable to the search for similarities in the amino acid sequence of two proteins. J. Molec. Biol. 48, 443–453 (1970)

    Article  Google Scholar 

  2. Altschul, F., Lipman, D.J.: Threes, stars, and multiple biological sequence alignment. SIAM J. appl. Math. 49, 197–209 (1989)

    Article  MATH  MathSciNet  Google Scholar 

  3. Chan, S.C.C., Wong, A.K., Chiu, D.K.Y.: A survey of multiple sequence comparison methods. Bull. Math. Bio. 43, 563–598 (1992)

    Google Scholar 

  4. Feng, D.F., Doolittle, R.F.: Progressive sequence alignment as a prerequisite to correct phylogenetic trees. J. Molec. Evol. 25, 351–360 (1987)

    Article  Google Scholar 

  5. Feng, D.F., Johnson, M.S., Doolittle, R.F.: Aligning amino acid sequences: comparison of commonly used methods. J. Molec. Evol. 21, 112–125 (1982)

    Article  Google Scholar 

  6. Ficket, J.W.: Fast optimal alignment. Nucl. Acids Res. 12, 175–180 (1984)

    Article  Google Scholar 

  7. Kim, J., Pramanik, S.: An efficient method for multiple sequence alignment. In: Proc. Second International Conference on Intelligent Systems for Molecular Biology, pp. 212–217 (1994)

    Google Scholar 

  8. Kim, J., Pramanik, S., Chung, M.J.: Multiple sequence alignment using simulated annealing. CABIOS 10, 419–426 (1994)

    Google Scholar 

  9. Martinez, H.M.: A flexible multiple sequence alignment program. Nucl. Acids. Res. 16, 1683–1691 (1988)

    Article  Google Scholar 

  10. Murata, M., Richardson, J.S., Sussman, J.L.: Simultaneous comparison of three protein sequences. In Proc. Natl. Acad. Sci. USA. 82, 3073–3077 (1985)

    Article  Google Scholar 

  11. Notredame, C., Higgins, D.: SAGA:sequence alignment by genetic algorithm. Nucl. Acids. Res. 24(8), 1515–1524 (1996)

    Article  Google Scholar 

  12. Sankoff, D.: Simultaneous comparison of three or more sequences related by a tree. Addison-Wesley, Reading (1983)

    Google Scholar 

  13. Sankoff, D., Kruskal, J.B.: Time Warps, String Edits and Macromolecules: The theory and practice of Sequence Comparison. Addison-Wesley, Reading (1983)

    Google Scholar 

  14. Taylor, W.R.: Multiple sequence alignment by a pairwise algorithm. CABIOS 3, 81–87 (1987)

    Google Scholar 

  15. Lipman, D.J., Altschul, S.F., Kececioglu, J.D.: A tool for multiple sequence alignment. Proc. Natl. Acad. Sci. USA. 86, 4412–4415 (1989)

    Article  Google Scholar 

  16. Altschul, S.F.: Gap costs for multiple sequence alignment. J Theor. Biol. 138, 297–309 (1989)

    Article  MathSciNet  Google Scholar 

  17. Kim, J., Uhmn, S.: An efficient method for multiple sequence alignment using subalignment refinement. In: Proc. METMBS, pp. 126–132 (2003)

    Google Scholar 

  18. Dayhoff, M.O.: A model of evolutionary change in proteins. matrices for detecting distance relationships. In: Dayhoff., M.O. (ed.) Atlas of Protein sequence an Structure, Washington. DC. National Biomedical Research Foundation, vol. 5, suppl.3, pp. 354–352 (1978)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2004 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Kim, J., Kim, DH., Uhmn, S. (2004). A Useful Method for Multiple Sequence Alignment and Its Implementation. In: Laganá, A., Gavrilova, M.L., Kumar, V., Mun, Y., Tan, C.J.K., Gervasi, O. (eds) Computational Science and Its Applications – ICCSA 2004. ICCSA 2004. Lecture Notes in Computer Science, vol 3043. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-24707-4_11

Download citation

  • DOI: https://doi.org/10.1007/978-3-540-24707-4_11

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-22054-1

  • Online ISBN: 978-3-540-24707-4

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics