Separating Codes: Constructions and Bounds

  • Gérard Cohen
  • Hans Georg Schaathun
Part of the Lecture Notes in Computer Science book series (LNCS, volume 2976)


Separating codes, initially introduced to test automaton, have revived lately in the study of fingerprinting codes, which are used for copyright protection. Separating codes play their role in making the fingerprinting scheme secure against coalitions of pirates. We provide here better bounds, constructions and generalizations for these codes.


Copyright Protection Broadcast Encryption Secure Code Normalise Minimum Distance Kerdock Code 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Boneh, D., Shaw, J.: Collusion-secure fingerprinting for digital data. IEEE Trans. on Inf. Theory 44, 480–491 (1998)CrossRefMathSciNetGoogle Scholar
  2. 2.
    Körner, J., Simonyi, G.: Separating partition systems and locally different sequences. SIAM J. Discrete Math. 1(3), 355–359 (1988)zbMATHCrossRefMathSciNetGoogle Scholar
  3. 3.
    Sagalovich, Y.L.: Separating systems. Probl. Inform. Trans. 30(2), 105–123 (1994)zbMATHMathSciNetGoogle Scholar
  4. 4.
    Barg, A., Cohen, G., Encheva, S., Kabatiansky, G., Zémor, G.: A hypergraph approach to the identifying parent property. SIAM J. Disc. Math. 14(3), 423–431 (2001)zbMATHCrossRefGoogle Scholar
  5. 5.
    Cohen, G., Encheva, S., Schaathun, H.G.: More on (2, 2)-separating systems. IEEE Trans. Inform. Theory 48(9), 2606–2609 (2002)zbMATHCrossRefMathSciNetGoogle Scholar
  6. 6.
    D’yachkov, A., Vilenkin, P., Macula, A., Torney, D.: Families of finite sets in which no intersection of ℓ sets is covered by the union of s others. J. Combinatorial Theory 99, 195–208 (2002)zbMATHCrossRefMathSciNetGoogle Scholar
  7. 7.
    Tsfasmann, M.A.: Algebraic-geometric codes and asymptotic problems. Discrete Applied Math. 33, 241–256 (1991)CrossRefGoogle Scholar
  8. 8.
    Krasnopeev, A., Sagalovitch, Y.: The Kerdock codes and separating systems. In: Eighth International Workshop on Algebraic and Combinatorial Theory, September 8-14, pp. 165–167 (2002)Google Scholar
  9. 9.
    Kumar, R., Rajagopalan, S., Sahai, A.: Coding constructions for blacklisting problems without computational assumptions. In: Wiener, M. (ed.) CRYPTO 1999. LNCS, vol. 1666, pp. 609–623. Springer, Heidelberg (1999)Google Scholar
  10. 10.
    Xing, C.: Asymptotic bounds on frameproof codes. IEEE Trans. Inform. Th. 40, 2991–2995 (2002)CrossRefGoogle Scholar
  11. 11.
    Garay, J., Staddon, J., Wool, A.: Long-lived broadcast encryption. In: Bellare, M. (ed.) CRYPTO 2000. LNCS, vol. 1880, pp. 333–352. Springer, Heidelberg (2000)CrossRefGoogle Scholar
  12. 12.
    Blackburn, S.R.: Frameproof codes. SIAM J. Discrete Math. 16, 499–510 (2003)zbMATHCrossRefMathSciNetGoogle Scholar
  13. 13.
    Cohen, G., Schaathun, H.-G.: New upper bounds on separating codes. In: 2003 International Conference on Telecommunications (February 2003)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2004

Authors and Affiliations

  • Gérard Cohen
    • 1
  • Hans Georg Schaathun
    • 2
  1. 1.Ecole Nationale Supérieure des TélécommunicationsParis CedexFrance
  2. 2.Department of InformaticsUniversity of Bergen HøyteknologisenteretBergenNorway

Personalised recommendations