Advertisement

How Expressions Can Code for Automata

  • Sylvain Lombardy
  • Jacques Sakarovitch
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 2976)

Abstract

In this paper we investigate how it is possible to recover an automaton from a rational expression that has been computed from that automaton. The notion of derived term of an expression, introduced by Antimirov, appears to be instrumental in this problem. The second important ingredient is the co-minimization of an automaton, a dual and generalized Moore algorithm on non-deterministic automata. If an automaton is then sufficiently “decorated”, the combination of these two algorithms gives the desired result. Reducing the amount of “decoration” is still the object of ongoing investigation.

Keywords

Rational Expression Regular Expression Russian Mathematical Regular Language Empty Word 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Antimirov, V.: Partial derivatives of regular expressions and finite automaton constructions. Theoret. Computer Sci. 155, 291–319 (1996)zbMATHCrossRefMathSciNetGoogle Scholar
  2. 2.
    Arnold, A.: Systèmes de transitions finis et sémantique des processus communiquants, Masson (1992); English translation: Finite transitions systems. Prentice-Hall, Englewood Cliffs (1994)Google Scholar
  3. 3.
    Berry, G., Sethi, R.: From regular expressions to deterministic automata. Theoret. Computer Sci. 48, 117–126 (1986)zbMATHCrossRefMathSciNetGoogle Scholar
  4. 4.
    Berstel, J., Pin, J.-E.: Local languages and the Berry-Sethi algorithm. Theoret. Computer Sci. 155, 439–446 (1996)zbMATHCrossRefMathSciNetGoogle Scholar
  5. 5.
    Brzozowski, J.A.: Derivatives of regular expressions. J. Assoc. Comput. Mach. 11, 481–494 (1964)zbMATHMathSciNetGoogle Scholar
  6. 6.
    Caron, P., Ziadi, D.: Characterization of Glushkov automata. Theoret. Computer Sci. 233, 75–90 (2000)zbMATHCrossRefMathSciNetGoogle Scholar
  7. 7.
    Champarnaud, J.-M., Ziadi, D.: New finite automaton constructions based on canonical derivatives. In: Daley, M., Eramian, M., Yu, S. (eds.) Pre-Proceedings of CIAA 2000, Univ. of Western Ontario, pp. 36–43 (2000)Google Scholar
  8. 8.
    Champarnaud, J.-M., Ziadi, D.: Canonical derivatives, partial derivatives and finite automaton constructions. Theoret. Computer Sci. 289, 137–163 (2002)zbMATHCrossRefMathSciNetGoogle Scholar
  9. 9.
    Conway, J.H.: Regular algebra and finite machines. Chapman and Hall, Boca Raton (1971)zbMATHGoogle Scholar
  10. 10.
    Glushkov, V.: The abstract theory of automata. Russian Mathematical Surveys 16, 1–53 (1961)CrossRefGoogle Scholar
  11. 11.
    Lombardy, S., Sakarovitch, J.: Derivatives of rational expressions with multiplicity. In: Diks, K., Rytter, W. (eds.) MFCS 2002. LNCS, vol. 2420, pp. 471–482. Springer, Heidelberg (2002)CrossRefGoogle Scholar
  12. 12.
    Lombardy, S., Sakarovitch, J.: How expressions code for automata. In: TIARAIRO (to appear)Google Scholar
  13. 13.
    McNaughton, R., Yamada, H.: Regular expressions and state graphs for automata. IRE Trans. on Electronic Computers 9, 39–47 (1960)CrossRefGoogle Scholar
  14. 14.
    Sakarovitch, J.: A construction on automata that has remained hidden. Theoret. Computer Sci. 204, 205–231 (1998)zbMATHCrossRefMathSciNetGoogle Scholar
  15. 15.
    Thompson, K.: Regular expression search algorithm. Comm. Assoc. Comput. Mach. 11, 419–422 (1968)zbMATHGoogle Scholar
  16. 16.
    Wood, D.: Theory of Computation. Wiley, Chichester (1987)zbMATHGoogle Scholar
  17. 17.
    Yu, S.: Regular languages. In: Rozenberg, G., Salomaa, A. (eds.) Handbook of Formal Languages, vol. 1, pp. 41–111. Elsevier, Amsterdam (1997)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2004

Authors and Affiliations

  • Sylvain Lombardy
    • 1
  • Jacques Sakarovitch
    • 2
  1. 1.LIAFA, Université Paris 7Paris cedex 05France
  2. 2.LTCI, CNRS / ENSTParis Cedex 13France

Personalised recommendations