Space-Efficient Algorithms for Computing the Convex Hull of a Simple Polygonal Line in Linear Time

  • Hervé Brönnimann
  • Timothy M. Chan
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 2976)


We present space-efficient algorithms for computing the convex hull of a simple polygonal line in-place, in linear time. It turns out that the problem is as hard as stable partition, i.e., if there were a truly simple solution then stable partition would also have a truly simple solution, and vice versa. Nevertheless, we present a simple self-contained solution that uses O(log n) space, and indicate how to improve it to O(1) space with the same techniques used for stable partition. If the points inside the convex hull can be discarded, then there is a truly simple solution that uses a single call to stable partition, and even that call can be spared if only extreme points are desired (and not their order). If the polygonal line is closed, then the problem admits a very simple solution which does not call for stable partitioning at all.


Convex Hull Convex Polygon Simple Polygon Polygonal Line Current Vertex 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Aloupis, G.: A History of Linear-time Convex Hull Algorithms for Simple Polygons,
  2. 2.
    Boissonnat, J.-D., Yvinec, M.: Algorithmic Geometry. Cambridge University Press, Cambridge (1998)zbMATHGoogle Scholar
  3. 3.
    Brönnimann, H., Iacono, J., Katajainen, J., Morin, P., Morrison, J., Toussaint, G.T.: Space-efficient planar convex hull algorithms. To appear in Theoretical Computer Science (2002); Special issue of selected papers from Rajsbaum, S. (ed.): LATIN 2002. LNCS, vol. 2286. Springer, Heidelberg (2002)Google Scholar
  4. 4.
    Cormen, T., Leiserson, C., Rivest, R., Stein, C.: Introduction to Algorithms, 2nd edn. MIT Press, Cambridge (2001)zbMATHGoogle Scholar
  5. 5.
    Chen, E.Y., Chan, T.M.: A Space-Efficient Algorithm for Segment Intersection. In: Proc. 15th Canadian Conference on Computational Geometry, pp. 68–71 (2003)Google Scholar
  6. 6.
    Geffert, V., Katajainen, J., Pasanen, T.: Asymptotically efficient in-place merging. Theoretical Computer Science 237, 159–181 (2000)zbMATHCrossRefMathSciNetGoogle Scholar
  7. 7.
    Katajainen, J., Pasanen, T.: Stable minimum space partitioning in linear time. BIT 32, 580–585 (1992)zbMATHCrossRefMathSciNetGoogle Scholar
  8. 8.
    Katajainen, J., Pasanen, T.: Sorting multiset stably in minimum space. Acta Informatica 31, 410–421 (1994)CrossRefMathSciNetGoogle Scholar
  9. 9.
    Katajainen, J., Pasanen, T., Teuhola, J.: Practical in-place mergesort. Nordic Journal of Computing 3, 27–40 (1996)MathSciNetGoogle Scholar
  10. 10.
    Lee, D.T.: On finding the convex hull of a simple polygon. International Journal of Computing & Information Sciences 12(2), 87–98 (1983)zbMATHCrossRefGoogle Scholar
  11. 11.
    Melkman, A.: On-line construction of the convex hull of a simple polygon. Information Processing Letters 25, 11–12 (1987)zbMATHCrossRefMathSciNetGoogle Scholar
  12. 12.
    Munro, J.I., Raman, V., Salowe, J.S.: Stable in Situ Sorting and Minimum Data Movement. BIT 30(2), 220–234 (1990)zbMATHCrossRefMathSciNetGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2004

Authors and Affiliations

  • Hervé Brönnimann
    • 1
  • Timothy M. Chan
    • 2
  1. 1.Computer and Information SciencePolytechnic UniversityBrooklynUSA
  2. 2.School of Computer ScienceUniversity of WaterlooWaterlooCanada

Personalised recommendations