Link-Contention-Aware Genetic Scheduling Using Task Duplication in Grid Environments

  • Wensheng Yao
  • Xiao Xie
  • Jinyuan You
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 3033)


In this paper, we consider the problem of scheduling precedence-constrained tasks as well as communications in the grid environment where computers and links are heterogeneous and time-sharing. Herein, we propose a novel genetic scheduling algorithm for grid computing. The new algorithm adopts a special chromosome encoding scheme in order to make better use of task duplication. Moreover, knowledge based genetic operators are developed to improve the performance of the algorithm. We perform comparison studies in a simulated grid environment. Experimental results show the effectiveness of the enhanced genetic scheduling algorithm.


Genetic scheduling task duplication link contention 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Foster, I., Kesselman, C. (eds.): The Grid: Blueprint for a Future Computing Infrastucture. Morgan Kaufmann Publishers, Calif. (1998)Google Scholar
  2. 2.
    Heymann, E., Senar, M.A., Luque, E., Livny, M.: Adaptive Scheduling for Master- Worker Applications on the Computational Grid. In: Buyya, R., Baker, M. (eds.) GRID 2000. LNCS, vol. 1971, pp. 214–227. Springer, Heidelberg (2000)CrossRefGoogle Scholar
  3. 3.
    Yao, W., Li, B., You, J.: Genetic Scheduling on Minimal Processing Elements in the Grid. In: McKay, B., Slaney, J.K. (eds.) Canadian AI 2002. LNCS (LNAI), vol. 2557, pp. 465–476. Springer, Heidelberg (2002)CrossRefGoogle Scholar
  4. 4.
    Wolski, R., Spring, N.T., Hayes, J.: The Network Weather Service: a distributed resource performance forecasting service for metacomputing. Journal of Future Generation Computing Systems 15, 757–768 (1999)CrossRefGoogle Scholar
  5. 5.
    Sun, X., Wu, M.: Grid Harvest Service: A System for Long-Term, Application-Level Task Scheduling. In: Proceedings of 17th IPDPS, vol. 25 (2003)Google Scholar
  6. 6.
    Ullman, J.D.: NP-complete scheduling problems. Journal of Computing System Science 10, 384–393 (1975)zbMATHCrossRefMathSciNetGoogle Scholar
  7. 7.
    Kwok, Y.K., Ahmad, I.: Link contention-constrained scheduling and mapping of tasks and messages to a network of heterogeneous processors. Cluster Computing 3, 113–124 (2000)CrossRefGoogle Scholar
  8. 8.
    Sih, G.C., Lee, E.A.: A compile-time scheduling heuristic for interconnectionconstrained heterogeneous processor architectures. IEEE Transactions on Parallel and Distributed Systems 4(2), 75–87 (1993)CrossRefGoogle Scholar
  9. 9.
    Wang, L., Siegel, H.J., Roychowdhery, V.P., Maciejewski, A.: Task matching and scheduling in heterogeneous computing environments using a genetic-algorithm-based approach. JPDC 47, 8–22 (1997)Google Scholar
  10. 10.
    Ranaweera, S., Agrawal, D.P.: A Task Duplication Based Scheduling Algorithm for Heterogeneous Systems. In: Proceedings of 4th International Parallel and Distributed Processing Symposium, pp. 445–450 (2000)Google Scholar
  11. 11.
    Holland, J.: Adaptation in natural and artificial systems, 2nd edn. MIT Press, Cambridge (1992)Google Scholar
  12. 12.
    Casanova, H.: Simgrid: a Toolkit for the Simulation of Application Scheduling. In: Proceedings of the First IEEE/ACM International Symposium on Cluster Computing and the Grid, pp. 430–437 (2001)Google Scholar
  13. 13.
    Kwok, Y.K., Ahmad, I.: Benchmarking and comparison of the task graph scheduling algorithms. JPDC 59(3), 381–422 (1999)zbMATHGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2004

Authors and Affiliations

  • Wensheng Yao
    • 1
  • Xiao Xie
    • 1
  • Jinyuan You
    • 1
  1. 1.Department of Computer Science and EngineeringShanghai Jiao Tong UniversityShanghaiChina

Personalised recommendations