Skip to main content

Sequential Aggregate Signatures from Trapdoor Permutations

  • Conference paper

Part of the Lecture Notes in Computer Science book series (LNCS,volume 3027)

Abstract

An aggregate signature scheme (recently proposed by Boneh, Gentry, Lynn, and Shacham) is a method for combining n signatures from n different signers on n different messages into one signature of unit length. We propose sequential aggregate signatures, in which the set of signers is ordered. The aggregate signature is computed by having each signer, in turn, add his signature to it. We show how to realize this in such a way that the size of the aggregate signature is independent of n. This makes sequential aggregate signatures a natural primitive for certificate chains, whose length can be reduced by aggregating all signatures in a chain. We give a construction in the random oracle model based on families of certified trapdoor permutations, and show how to instantiate our scheme based on RSA.

Keywords

  • Signature Scheme
  • Random Oracle
  • Security Proof
  • Random Oracle Model
  • Coin Toss

These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

References

  1. Bellare, M., Rogaway, P.: Random oracles are practical: A paradigm for designing efficient protocols. In: Denning, D., Pyle, R., Ganesan, R., Sandhu, R., Ashby, V. (eds.) Proceedings of CCS 1993, pp. 62–73. ACM Press, New York (1993)

    CrossRef  Google Scholar 

  2. Bellare, M., Yung, M.: Certifying permutations: Non-interactive zero-knowledge based on any trapdoor permutation. J. Cryptology 9(1), 149–166 (1996)

    MATH  CrossRef  MathSciNet  Google Scholar 

  3. Boldyreva, A.: Efficient threshold signature, multisignature and blind signature schemes based on the gap-Diffie-Hellman-group signature scheme. In: Desmedt, Y.G. (ed.) PKC 2003. LNCS, vol. 2567, pp. 31–46. Springer, Heidelberg (2002)

    CrossRef  Google Scholar 

  4. Boneh, D., Franklin, M.: Identity-based encryption from the Weil pairing. SIAM J. Computing 32(3), 586–615 (2003); Extended abstract in Kilian, J. (ed.): CRYPTO 2001. LNCS, vol. 2139. Springer, Heidelberg (2001)

    Google Scholar 

  5. Boneh, D., Gentry, C., Lynn, B., Shacham, H.: Aggregate and verifiably encrypted signatures from bilinear maps. In: Biham, E. (ed.) EUROCRYPT 2003. LNCS, vol. 2656, pp. 416–432. Springer, Heidelberg (2003)

    CrossRef  Google Scholar 

  6. Boneh, D., Lynn, B., Shacham, H.: Short signatures from the Weil pairing. In: Boyd, C. (ed.) ASIACRYPT 2001. LNCS, vol. 2248, pp. 514–532. Springer, Heidelberg (2001)

    CrossRef  Google Scholar 

  7. Cachin, C., Micali, S., Stadler, M.: Computationally private information retrieval with polylogarithmic communication. In: Stern, J. (ed.) EUROCRYPT 1999. LNCS, vol. 1592, pp. 402–414. Springer, Heidelberg (1999)

    Google Scholar 

  8. Coron, J.-S.: On the exact security of full domain hash. In: Bellare, M. (ed.) CRYPTO 2000. LNCS, vol. 1880, pp. 229–235. Springer, Heidelberg (2000)

    CrossRef  Google Scholar 

  9. Coron, J.-S.: Security proof for partial-domain hash signature schemes. In: Yung, M. (ed.) CRYPTO 2002. LNCS, vol. 2442, pp. 613–626. Springer, Heidelberg (2002)

    CrossRef  Google Scholar 

  10. Dodis, Y., Reyzin, L.: On the power of claw-free permutations. In: Cimato, S., Galdi, C., Persiano, G. (eds.) SCN 2002. LNCS, vol. 2576, pp. 55–73. Springer, Heidelberg (2003)

    CrossRef  Google Scholar 

  11. Goldwasser, S., Micali, S., Rivest, R.: A digital signature scheme secure against adaptive chosen-message attacks. SIAM J. Computing 17(2), 281–308 (1988)

    MATH  CrossRef  MathSciNet  Google Scholar 

  12. Lysyanskaya, A., Micali, S., Reyzin, L., Shacham, H.: Sequential aggregate signatures from trapdoor permutations. Cryptology ePrint Archive, Report 2003/091 (2003), http://eprint.iacr.org/

  13. Micali, S., Ohta, K., Reyzin, L.: Provable-subgroup signatures (1999) (unpublished manuscript)

    Google Scholar 

  14. Micali, S., Ohta, K., Reyzin, L.: Accountable-subgroup multisignatures (extended abstract). In: Proceedings of CCS 2001, pp. 245–254. ACM Press, New York (2001)

    CrossRef  Google Scholar 

  15. Ohta, K., Okamoto, T.: Multisignature schemes secure against active insider attacks. IEICE Trans. Fundamentals E82-A(1), 21–31 (1999)

    Google Scholar 

  16. Okamoto, T.: A digital multisignature scheme using bijective public-key cryptosystems. ACM Trans. Computer Systems 6(4), 432–441 (1988)

    CrossRef  Google Scholar 

  17. Rivest, R., Shamir, A., Adleman, L.: A method for obtaining digital signatures and public key cryptosystems. Commun. ACM 21, 120–126 (1978)

    MATH  CrossRef  MathSciNet  Google Scholar 

  18. Shoup, V.: Practical threshold signatures. In: Preneel, B. (ed.) EUROCRYPT 2000. LNCS, vol. 1807, pp. 207–220. Springer, Heidelberg (2000)

    CrossRef  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and Permissions

Copyright information

© 2004 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Lysyanskaya, A., Micali, S., Reyzin, L., Shacham, H. (2004). Sequential Aggregate Signatures from Trapdoor Permutations. In: Cachin, C., Camenisch, J.L. (eds) Advances in Cryptology - EUROCRYPT 2004. EUROCRYPT 2004. Lecture Notes in Computer Science, vol 3027. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-24676-3_5

Download citation

  • DOI: https://doi.org/10.1007/978-3-540-24676-3_5

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-21935-4

  • Online ISBN: 978-3-540-24676-3

  • eBook Packages: Springer Book Archive