Skip to main content

Multi-topic Information Filtering with a Single User Profile

  • Conference paper
Methods and Applications of Artificial Intelligence (SETN 2004)

Part of the book series: Lecture Notes in Computer Science ((LNAI,volume 3025))

Included in the following conference series:

Abstract

In Information Filtering (IF) a user may be interested in several topics in parallel. But IF systems have been built on representational models derived from Information Retrieval and Text Categorization, which assume independence between terms. The linearity of these models results in user profiles that can only represent one topic of interest. We present a methodology that takes into account term dependencies to construct a single profile representation for multiple topics, in the form of a hierarchical term network. We also introduce a series of non-linear functions for evaluating documents against the profile. Initial experiments produced positive results.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Amati, G., D’ Aloisi, D., Giannini, V., Ubaldini, F.: A framework for filtering news and managing distributed data. Journal of Universal Computer Science 3(8), 1007–1021 (1997)

    Google Scholar 

  2. Anick, P., Tipirneri, S.: The paraphrase search assistant: Terminological feedback for iterative information seeking. In: Hearst, M., Gey, F., Tong, R. (eds.) 22nd Annual International ACM SIGIR Conference on Research and Development in Information Retrieval, pp. 153–159 (1999)

    Google Scholar 

  3. Billsus, D., Pazzani, M.: A personal news agent that talks, learns and explains. In: 3rd International Conference on Autonomous Agents, Seattle, WA (1999)

    Google Scholar 

  4. Crestani, F.: Application of spreading activation techniques in information retrieval. Artificial Intelligence Review 11(6), 453–482 (1997)

    Article  Google Scholar 

  5. Doyle, L.B.: Semantic road maps for literature searchers. Journal of the ACM 8, 553–578 (1962)

    Article  Google Scholar 

  6. Jones, W.P., Furnas, G.W.: Pictures of relevance: A geometric analysis of similarity measures. Journal of the American Society of Information Science 38(6), 420–442 (1986)

    Article  Google Scholar 

  7. Krulwich, B., Burkey, C.: The InfoFinder agent: Learning user interests through heuristic phrase extraction. In: IEEE Expert, pp. 22–27 (1997)

    Google Scholar 

  8. Lang, K.: NewsWeeder: Learning to filter netnews. In: 12th International Conference on Machine Learning, ICML 1995 (1995)

    Google Scholar 

  9. Maes, P.: Agents that reduce work and information overload. Communications of the ACM 37(7), 30–40 (1994)

    Article  Google Scholar 

  10. McElligott, M., Sorensen, H.: An evolutionary connectionist approach to personal information filtering. In: 4th Irish Neural Networks Conference 1994, University College, Dublin (1994)

    Google Scholar 

  11. Mostafa, J., Mukhopadhyay, S., Palakal, M., Lam, W.: A multilevel approach to intelligent information filtering: model, system, and evaluation. ACM Transactions on Information Systems (TOIS) 15(4), 368–399 (1997)

    Article  Google Scholar 

  12. Moukas, A., Maes, P.: Amalthaea: An evolving multi-agent information filtering and discovery system for the www. Autonomous Agents and Multi-Agent Systems 1(1), 59–88 (1998)

    Article  Google Scholar 

  13. Nanas, N., Uren, V., Roeck, A.D., Domingue, J.: Building and applying a concept hierarchy representation of a user profile. In: 26th Annual International ACM SIGIR International Conference on Research and Development in Information Retrieval, pp. 198–204. ACM Press, New York (2003)

    Google Scholar 

  14. Nevill-Manning, C.G., Witten, I.H., Paynter, G.W.: Lexically-generated subject hierarchies for browsing large collections. International Journal on Digital Libraries 2(2-3), 111–123 (1999)

    Article  Google Scholar 

  15. Pazzani, M., Muramatsu, J., Billsus, D.: Syskill & webert: identifying interesting web sites. In: 13th National Conference on Artificial Intelligence, Portland, Oregon (1996)

    Google Scholar 

  16. Robertson, S.E., Sparck Jones, K.: Relevance weighting of search terms. Journal of the American Society for Information Science 27, 129–146 (1976)

    Article  Google Scholar 

  17. Rose, T., Stevenson, M., Whitehead, M.: The Reuters Corpus Vol. 1 - from yesterday’s news to tomorrow’s language resources. In: 3rd International Conference on Language Resources and Evaluation (2002)

    Google Scholar 

  18. Salton, G., McGill, M.J.: Introduction to Modern Information Retrieval. McGraw-Hill Inc., New York (1983)

    Google Scholar 

  19. Sanderson, M., Croft, B.W.: Deriving concept hierarchies from text. In: 22nd Annual Internation ACM SIGIR Conference on Research and Development in Information Retrieval, Berkeley, California, United States, pp. 206–213. ACM Press, New York (1999)

    Chapter  Google Scholar 

  20. Sebastiani, F.: Machine learning in automated text categorization. ACM Computing Surveys 34(1) (2002)

    Google Scholar 

  21. Sheth, B.D.: A Learning Approach to Personalized Information Filtering. Master of Science, Massachusetts Institute of Technology (1994)

    Google Scholar 

  22. Sorensen, H., O’ Riordan, A., O’ Riordan, C.: Profiling with the informer text filtering agent. Journal of Universal Computer Science 3(8), 988–1006 (1997)

    Google Scholar 

  23. Wilkinson, R., Hingston, P.: Using the cosine measure in a neural network for document retrieval. In: 14th Annual Internation ACM SIGIR conference on Research and Development in Information Retrieval, pp. 202–210. ACM Press, New York (1991)

    Chapter  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2004 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Nanas, N., Uren, V., de Roeck, A., Domingue, J. (2004). Multi-topic Information Filtering with a Single User Profile. In: Vouros, G.A., Panayiotopoulos, T. (eds) Methods and Applications of Artificial Intelligence. SETN 2004. Lecture Notes in Computer Science(), vol 3025. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-24674-9_42

Download citation

  • DOI: https://doi.org/10.1007/978-3-540-24674-9_42

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-21937-8

  • Online ISBN: 978-3-540-24674-9

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics