Constraint programming based column generation is a hybrid optimization framework recently proposed that uses constraint programming (CP) to solve column generation subproblems. In the past, this framework has been successfully used to solve both scheduling and routing problems. Unfortunately the stabilization problems well known with column generation can be significantly worse when CP, rather than Dynamic Programming (DP), is used at the subproblem level. Since DP can only be used to model subproblem with special structures, there has been strong motivation to develop efficient CP based column generation in the last five years. The aim of this short paper is to point out potential traps for these new methods and to propose very simple means of avoiding them.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Barnhart, C., Johnson, E.L., Nemhauser, G.L., Savelsbergh, M.W.P., Vance, P.H.: Branch-and-Price: Column Generation for Huge Integer Programs. Operations Research 46, 316–329 (1998)CrossRefMathSciNetzbMATHGoogle Scholar
  2. 2.
    Chabrier, A.: Using Constraint Programming Search Goals to Define Column Generation Search Procedures. In: Integration of AI and OR Techniques in Constraint Programming for Combinatorial Optimisation Problems, pp. 19–27 (2000)Google Scholar
  3. 3.
    Chabrier, A.: Maestro: A column and cut generation modeling and search framework. Technical report, ILOG SA (2002),
  4. 4.
    Dantzig, G.B., Wolfe, P.: Decomposition principles for linear programs. Operations Research 8, 101–111 (1960)CrossRefzbMATHGoogle Scholar
  5. 5.
    Desrosiers, J., Dumas, Y., Solomon, M.M., Soumis, F.: Time Constrained Routing and Scheduling. In: Ball, M.O., Magnanti, T.L., Monma, C.L. (eds.) Network Routing. Handbooks in Operations Research and Management Science, vol. 8, pp. 35–139. North-Holland, Amsterdam (1995)CrossRefGoogle Scholar
  6. 6.
    du Merle, O., Villeneuve, D., Desrosiers, J., Hansen, P.: Stabilized Column Generation. Discrete Mathematics 194, 229–237 (1999)CrossRefMathSciNetzbMATHGoogle Scholar
  7. 7.
    Fahle, T., Junker, U., Karisch, S.E., Kohl, N., Sellmann, M., Vaaben, B.: Constraint Programming Based Column Generation for Crew Assignment. Journal of Heuristics (8), 59–81 (2002)Google Scholar
  8. 8.
    Fahle, T., Sellmann, M.: Constraint Programming Based Column Generation with Knapsack Subproblems. Annals of Operations Research 115, 73–94 (2002)CrossRefMathSciNetzbMATHGoogle Scholar
  9. 9.
    Harvey, W., Ginsberg, M.: Limited Discrepancy Search. In: Proc. of the Fourteenth International Joint Conference on Artificial Intelligence (IJCAI 1995), Montréal, Canada, pp. 607–615. Morgan Kaufmann, San Francisco (1995)Google Scholar
  10. 10.
    Junker, U., Karisch, S.E., Kohl, N., Vaaben, B., Fahle, T., Sellmann, M.: A Framework for Constraint Programming Based Column Generation. In: Principles and Practice of Constraint Programming. LNCS, pp. 261–274 (1999)Google Scholar
  11. 11.
    Rousseau, L.-M., Focacci, F., Gendreau, M., Pesant, G.: Solving VRPTWs with Constraint Programming Based Column Generation. Annals of Operations Research (2004) (to appear)Google Scholar
  12. 12.
    Rousseau, L.-M., Gendreau, M., Feillet, D.: Interior Point Stabilization for Column Generation. Technical report, Centre de recherche sur les transports (2003)Google Scholar
  13. 13.
    Sellmann, M., Zervoudakis, K., Stamatopoulos, P., Fahle, T.: Crew Assignment via Constraint Programmging: Integrating Column Generation and Heuristic Tree Search. Annals of Operations Research 115, 207–225 (2002)CrossRefMathSciNetzbMATHGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2004

Authors and Affiliations

  • Louis-Martin Rousseau
    • 1
  1. 1.École Polytechnique de MontréalMontréalCanada

Personalised recommendations