Advertisement

Abstract

The graph isomorphism problem consists in deciding if two given graphs have an identical structure. This problem can be modeled as a constraint satisfaction problem in a very straightforward way, so that one can use constraint programming to solve it. However, constraint programming is a generic tool that may be less efficient than dedicated algorithms which can take advantage of the global semantic of the original problem.

Hence, we introduce in this paper a new global constraint dedicated to graph isomorphism problems, and we define an associated filtering algorithm that exploits all edges of the graphs in a global way to narrow variable domains. We then show how this global constraint can be decomposed into a set of “distance” constraints which propagate more domain reductions than “edge” constraints that are usually generated for this problem.

Keywords

Constraint Programming Constraint Satisfaction Problem Global Constraint Distance Constraint Isomorphism Problem 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Aggoun, A., Beldiceanu, N.: Extending CHIP in order to solve complex and scheduling and placement problems. In: Actes des Journées Francophones de Programmation et Logique, Lille, France (1992)Google Scholar
  2. 2.
    Aho, A.V., Hopcroft, J.E., Ullman, J.D.: The design and analysis of computer algorithms. Addison Wesley, Reading (1974)zbMATHGoogle Scholar
  3. 3.
    Bessière, C., Cordier, M.-O.: Arc-consistency and arc-consistency again. In: Proceedings of the 11th National Conference on Artificial Intelligence, July 1993, pp. 108–113. AAAI Press, Menlo Park (1993)Google Scholar
  4. 4.
    Bessière, C., Van Hentenryck, P.: To be or not to be.. a global constraint. In: Rossi, F. (ed.) CP 2003. LNCS, vol. 2833, pp. 789–794. Springer, Heidelberg (2003)CrossRefGoogle Scholar
  5. 5.
    Bessière, C., Régin Refining, J.-C.: the basic constraint propagation algorithm. In: Nebel, B. (ed.) Proceedings of the seventeenth International Conference on Artificial Intelligence (IJCAI 2001), August 4-10, pp. 309–315. Morgan Kaufmann Publishers, Inc., San Francisco (2001)Google Scholar
  6. 6.
    Champin, P.-A., Solnon, C.: Measuring the similarity of labeled graphs. In: Ashley, K.D., Bridge, D.G. (eds.) ICCBR 2003. LNCS (LNAI), vol. 2689, pp. 80–95. Springer, Heidelberg (2003)CrossRefGoogle Scholar
  7. 7.
    Cordella, L.P., Foggia, P., Sansone, C., Vento, M.: An improved algorithm for matching large graphs. In: 3rd IAPR-TC15 Workshop on Graph-based Representations in Pattern Recognition, pp. 149–159. Cuen (2001)Google Scholar
  8. 8.
    Cormen, T.H., Leiserson, C.E., Rivest, R.L.: Introduction to Algorithms. MIT Press, Cambridge (1990)zbMATHGoogle Scholar
  9. 9.
    Foggia, P., Sansone, C., Vento, M.: A performance comparison of five algorithms for graph isomorphism. In: 3rd IAPR-TC15 Workshop on Graphbased Representations in Pattern Recognition, pp. 188–199. Cuen (2001)Google Scholar
  10. 10.
    Fortin, S.: The graph isomorphism problem. Technical report, Dept of Computing Science, Univ. Alberta, Edmonton, Alberta, Canada (1996)Google Scholar
  11. 11.
    Garey, M.R., Johnson, D.S.: Computers and Intractability : A Guide to The Theory of NP-Completness. W.H. Freeman, San Francisco (1979)Google Scholar
  12. 12.
    Hopcroft, J.E., Wong, J.-K.: Linear time algorithm for isomorphism of planar graphs. In: 6th Annu. ACM Symp. theory of Comput., pp. 172–184 (1974)Google Scholar
  13. 13.
    ILOG,S.A. ILOG Solver 5.0 User’s Manual and Reference Manual (2000) Google Scholar
  14. 14.
    Laburthe, F., and the OCRE project team: CHOCO: implementing a CP kernel. In: Proc. of the CP 2000 workshop on techniques for implementing constraint programming systems, Singapore (2000)Google Scholar
  15. 15.
    Luks, E.M.: Isomorphism of graphs of bounded valence can be tested in polynomial time. Journal of Computer System Science, 42–65 (1982)Google Scholar
  16. 16.
    McGregor, J.J.: Relational consistency algorithms and their applications in finding subgraph and graph isomorphisms. Information Science 19, 229–250 (1979)zbMATHCrossRefMathSciNetGoogle Scholar
  17. 17.
    McKay, B.D.: Practical graph isomorphism. Congressus Numerantium 30, 45–87 (1981)MathSciNetGoogle Scholar
  18. 18.
    Mohr, R., Henderson, T.C.: Arc and path consistency revisited. Artificial Intelligence 28, 65–74 (1986)CrossRefGoogle Scholar
  19. 19.
    Régin, J.-C.: Développement d’Outils Algorithmiques pour l’Intelligence Artificielle. Application á la Chimie Organique. PhD thesis, Univ. Montpellier II (1995)Google Scholar
  20. 20.
    Tsang, E.: Foundations of Constraint Satisfaction. Academic Press, London (1993)Google Scholar
  21. 21.
    Ullman, J.D.: An algorithm for subgraph isomorphism. Journal of the Association of Computing Machinery 23(1), 31–42 (1976)zbMATHGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2004

Authors and Affiliations

  • Sébastien Sorlin
    • 1
  • Christine Solnon
    • 1
  1. 1.LIRIS, CNRS FRE 2672, bât. Nautibus University of Lyon IVilleurbanne cedexFrance

Personalised recommendations