Skip to main content

Abstract

A hybrid framework that uses Mathematical and Constraint Programming for the scheduling of batch chemical processes is proposed. Mathematical programming is used for the high-level optimization decisions (number and type of tasks, and assignment of equipment units to tasks), and Constraint Programming is used for the low-level sequencing decisions. The original problem is decomposed into an MILP master problem and a CP subproblem. The master MILP is a relaxation of the original problem, and given a relaxed solution, the CP subproblem checks whether there is a feasible solution and generates integer cuts. The proposed framework is based on the hybrid algorithm of Maravelias and Grossmann ([1],[2]), and can be used for different objective functions and different plant configurations. In this paper we present the simplifications and enhancements that allow us to use the proposed framework in a variety of problems, and report computational results.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Maravelias, T.C., Grossmann, I.E.: A Hybrid MILP/CP Decomposition Approach for the Scheduling of Batch Plants. In: Proceedings of CP-AI-OR 2003, Montreal, Canada (2003)

    Google Scholar 

  2. Maravelias, C.T., Grossmann, I.E.: A Hybrid MILP/CP Decomposition Approach for the Short Term Scheduling of Multipurpose Batch Plants. To appear in Comput Chem. Eng. (2004)

    Google Scholar 

  3. Pinedo, M.: Scheduling: Theory, Algorithms, and Systems. Prentice Hall, Englewood Cliffs (2001)

    Google Scholar 

  4. Reklaitis, G.V.: Overview of scheduling and planning of batch process operations. In: NATO Advanced Study Institute- Batch Process Systems Engineering, Antalya, Turkey (1992)

    Google Scholar 

  5. Rippin, D.W.T.: Batch process systems engineering: a retrospective and prospective review. Comput. Chem. Eng. 17, S1–S13 (1993)

    Google Scholar 

  6. Pinto, J., Grossmann, I.E.: Assignment and Sequencing Models for the Scheduling of Chemical Processes. Annals of Operations Research 81, 433–466 (1998)

    Article  MathSciNet  MATH  Google Scholar 

  7. Shah, N.: Single- and multisite planning and scheduling: Current status and future challenges. In: AIChE Symposium Series, vol. 94, p. 75 (1998)

    Google Scholar 

  8. Kondili, E., Pantelides, C.C., Sargent, R.: A General Algorithm for Short-Term Scheduling of Batch Operations - I. MILP Formulation. Comput. Chem. Eng. 17, 211–227 (1993)

    Article  Google Scholar 

  9. Pantelides, C.C.: Unified Frameworks for the Optimal Process Planning and Scheduling. In: Proceedings on the Second Conference on Foundations of Computer Aided Operations, pp. 253–274 (1994)

    Google Scholar 

  10. Schilling, G., Pantelides, C.C.: A Simple Continuous-Time Process Scheduling Formulation and a Novel Solution Algorithm. Comput. Chem. Eng. 20, S1221–1226 (1996)

    Article  Google Scholar 

  11. Zhang, X., Sargent, R.W.H.: The Optimal Operation of Mixed Production Facilities - General Formulation and Some Approaches for the Solution. Comput. Chem. Eng. 20, 897–904 (1996)

    Article  Google Scholar 

  12. Mockus, L., Reklaitis, G.V.: Continuous Time Representation Approach to Batch and Continuous Process Scheduling. 1. MTNLP Formulation. Ind. Eng. Chem. Res. 38, 197–203 (1999)

    Article  Google Scholar 

  13. Castro, P., Barbosa-Povoa, A.P.F.D., Matos, H.: An Improved RTN Continuous-Time Formulation for the Short-term Scheduling of Multipurpose Batch Plants. Ind. Eng. Chem. Res. 40, 2059–2068 (2001)

    Article  Google Scholar 

  14. Maravelias, C.T., Grossmann, I.E.: A New General Continuous-Time State Task Network Formulation for the Short-Term Scheduling of Multipurpose Batch Plants. Ind. Eng. Chem. Res. 42(13), 3056–3074 (2003)

    Article  Google Scholar 

  15. ILOG OPL Studio 3.5: The Optimization Language, ILOG Inc. (2001)

    Google Scholar 

  16. ILOG OPL Studio 3.5 :The User’s Manual, ILOG Inc. (2001)

    Google Scholar 

  17. Adams, J., Balas, E., Zawack, D.: The Shifting Bottleneck Procedure for Job Shop Scheduling. Management Science 34, 391–401 (1988)

    Article  MathSciNet  MATH  Google Scholar 

  18. Balas, E., Vazacopoulos, A.: Guided Local Search with Shifting Bottleneck for Job Shop Scheduling. Management Science 44(2), 262–275 (1998)

    Article  MATH  Google Scholar 

  19. Jain, V., Grossmann, I.E.: Resource-constrained Scheduling of Tests in New Product Development. Ind. Eng. Chem. Res. 38, 3013–3026 (1999)

    Article  Google Scholar 

  20. Bockmayr, A., Pisaruk, N.: Detecting Infeasibility and Generating Cuts for MTP Using CP. In: Proceedings of CP-AI-OR 2003, Montreal, Canada (2003)

    Google Scholar 

  21. Balas, E.: Facets of the Knapsack Polytope. Mathematical Programming 8, 146–164 (1975)

    Article  MathSciNet  MATH  Google Scholar 

  22. Wolsey, L.A.: Faces for a Linear Inequality in 0-1 Variables. Mathematical Programming 8, 165–178 (1975)

    Article  MathSciNet  MATH  Google Scholar 

  23. Harjunkoski, I., Grossmann, I.E.: Decomposition Techniques for Multistage Scheduling Problems Using Mixed-Integer and Constrained Programming Methods. Comput. Chem. Eng. 26, 1533–1552 (2002)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2004 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Maravelias, C.T., Grossmann, I.E. (2004). Using MILP and CP for the Scheduling of Batch Chemical Processes. In: Régin, JC., Rueher, M. (eds) Integration of AI and OR Techniques in Constraint Programming for Combinatorial Optimization Problems. CPAIOR 2004. Lecture Notes in Computer Science, vol 3011. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-24664-0_1

Download citation

  • DOI: https://doi.org/10.1007/978-3-540-24664-0_1

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-21836-4

  • Online ISBN: 978-3-540-24664-0

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics