A Certificate-Based Signature Scheme

  • Bo Gyeong Kang
  • Je Hong Park
  • Sang Geun Hahn
Part of the Lecture Notes in Computer Science book series (LNCS, volume 2964)


In this paper, we propose the security notion of certificate-based signature that uses the same parameters and certificate revocation strategy as the encryption scheme presented at Eurocrypt 2003 by Gentry. Certificate-based signature preserves advantages of certificate-based encryption, such as implicit certification and no private key escrow. We present concrete certificate-based signature schemes derived from pairings on elliptic curves and prove their security in the random oracle model assuming that the underlying group is GDH. Additionally, we propose a concrete delegation-by-certificate proxy signature scheme which is derived from a certificate-based signature scheme after simple modifications. Our proxy scheme is provably secure in the random oracle model under the security notion defined by Boldyreva, Palacio and Warinschi.


Signature Scheme Proxy Signature Random Oracle Model Proxy Signature Scheme Security Notion 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Al-Riyami, S.S., Paterson, K.G.: Certificateless public key cryptography. Cryptology ePrint Archive, Report 2003/12, An extended abstract will appear in Laih, C.-S. (ed.): ASIACRYPT 2003. LNCS, vol. 2894, pp. 452–473. Springer, Heidelberg (2003)Google Scholar
  2. 2.
    Boneh, D., Franklin, M.: Identity-based encryption from the Weil pairing. SIAM J. Comput. 32(3), 586–615 (2003), A preliminary version appeared in Kilian, J. (ed.): CRYPTO 2001. LNCS, vol. 2139. Springer, Heidelberg (2001)Google Scholar
  3. 3.
    Boneh, D., Gentry, C., Lynn, B., Shacham, H.: Aggregate and verifiably encrypted signatures from bilinear maps. In: Biham, E. (ed.) EUROCRYPT 2003. LNCS, vol. 2656, pp. 416–432. Springer, Heidelberg (2003)CrossRefGoogle Scholar
  4. 4.
    Boneh, D., Lynn, B., Shacham, H.: Short signatures from the Weil pairing. In: Boyd, C. (ed.) ASIACRYPT 2001. LNCS, vol. 2248, pp. 514–532. Springer, Heidelberg (2001)CrossRefGoogle Scholar
  5. 5.
    Boldyreva, A.: Threshold signatures, multisignatures and blind signatures based on the gap-diffie-hellman-group signature scheme. In: Desmedt, Y.G. (ed.) PKC 2003. LNCS, vol. 2567, pp. 31–46. Springer, Heidelberg (2002)CrossRefGoogle Scholar
  6. 6.
    Boldyreva, A., Palacio, A., Warinschi, B.: Secure proxy signature schemes for delegation of signing rights. Cryptology ePrint Archive, Report 2003/096Google Scholar
  7. 7.
    Boyen, X.: Multipurpose identity-based signcryption - A Swiss army knife for identity-based cryptography. In: Boneh, D. (ed.) CRYPTO 2003. LNCS, vol. 2729, pp. 382–398. Springer, Heidelberg (2003)CrossRefGoogle Scholar
  8. 8.
    Cha, J.C., Cheon, J.H.: An identity-based signature from gap Diffie-Hellman groups. In: Desmedt, Y.G. (ed.) PKC 2003. LNCS, vol. 2567, pp. 18–30. Springer, Heidelberg (2002)CrossRefGoogle Scholar
  9. 9.
    Chen, X., Zhang, F., Kim, K.: A new ID-based group signature scheme from bilinear pairings. Cryptology ePrint Archive, Report 2003/116Google Scholar
  10. 10.
    Galbraith, S.D.: Supersingular curves in cryptography. In: Boyd, C. (ed.) ASIACRYPT 2001. LNCS, vol. 2248, pp. 495–513. Springer, Heidelberg (2001)CrossRefGoogle Scholar
  11. 11.
    Gentry, C.: Certificate-based encryption and the certificate revocation problem. In: Biham, E. (ed.) EUROCRYPT 2003. LNCS, vol. 2656, pp. 272–293. Springer, Heidelberg (2003)CrossRefGoogle Scholar
  12. 12.
    Hess, F.: Efficient identity based signature scheme based on pairings. In: Nyberg, K., Heys, H.M. (eds.) SAC 2002. LNCS, vol. 2595, pp. 310–324. Springer, Heidelberg (2003)CrossRefGoogle Scholar
  13. 13.
    Joux, A.: The Weil and Tate pairings as building blocks for public key cryptosystems. In: Fieker, C., Kohel, D.R. (eds.) ANTS 2002. LNCS, vol. 2369, pp. 20–32. Springer, Heidelberg (2002)CrossRefGoogle Scholar
  14. 14.
    Kang, B.G., Park, J.H., Hahn, S.G.: A certificate-based signature scheme, Full version of this paper, Available at
  15. 15.
    Lee, J.-Y., Cheon, J.H., Kim, S.: An analysis of proxy signatures: is a secure channel necessary? In: Joye, M. (ed.) CT-RSA 2003. LNCS, vol. 2612, pp. 68–79. Springer, Heidelberg (2003)CrossRefGoogle Scholar
  16. 16.
    Lee, B., Kim, K.: Self-certified signatures. In: Menezes, A., Sarkar, P. (eds.) INDOCRYPT 2002. LNCS, vol. 2551, pp. 199–214. Springer, Heidelberg (2002)CrossRefGoogle Scholar
  17. 17.
    Paterson, K.G.: ID-based signatures from pairings on elliptic curves. Electron. Lett. 38(18), 1025–1026 (2001)CrossRefGoogle Scholar
  18. 18.
    Shamir, A.: Identity-based cryptosystems and signature schemes. In: Blakely, G.R., Chaum, D. (eds.) CRYPTO 1984. LNCS, vol. 196, pp. 47–53. Springer, Heidelberg (1985)CrossRefGoogle Scholar
  19. 19.
    Zhang, F., Safavi-Naini, R., Lin, C.-Y.: New proxy signature, proxy blind signature and proxy ring signature schemes from bilinear pairings. Cryptology ePrint Archive, Report 2003/104Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2004

Authors and Affiliations

  • Bo Gyeong Kang
    • 1
  • Je Hong Park
    • 1
  • Sang Geun Hahn
    • 1
  1. 1.Department of MathematicsKorea Advanced Institute of Science and TechnologyDaejeonKorea

Personalised recommendations