A Generic Construction for Intrusion-Resilient Public-Key Encryption

  • Yevgeniy Dodis
  • Matt Franklin
  • Jonathan Katz
  • Atsuko Miyaji
  • Moti Yung
Part of the Lecture Notes in Computer Science book series (LNCS, volume 2964)


In an intrusion-resilient cryptosystem [10], two entities (a user and a base) jointly evolve a secret decryption key; this provides very strong protection against an active attacker who can break into the user and base repeatedly and even simultaneously. Recently, a construction of an intrusion-resilient public-key encryption scheme based on specific algebraic assumptions has been shown [6]. We generalize this previous work and present a more generic construction for intrusion-resilient public-key encryption from any forward-secure public-key encryption scheme satisfying a certain homomorphic property.


Encryption Scheme Challenge Ciphertext Decryption Oracle Choose Ciphertext Attack Homomorphic Property 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Anderson, R.: Two remarks on public-key cryptology. Invited Lecture. In: ACMCCCS 1997 (1997), Available at
  2. 2.
    Bellare, M., Miner, S.K.: A forward-secure digital signature scheme. In: Wiener, M. (ed.) CRYPTO 1999. LNCS, vol. 1666, p. 431. Springer, Heidelberg (1999)Google Scholar
  3. 3.
    Bellare, M., Palacio, A.: Protecting against key exposure: strongly keyinsulated encryption with optimal threshold, Available at
  4. 4.
    Boneh, D., Franklin, M.: Identity based encryption from the Weil pairing. Advances in Cryptology — Crypto 2001, LNCS vol. 2139, Springer-Verlag (2001), Full version to appear in SIAM J. Computing and available at
  5. 5.
    Canetti, R., Halevi, S., Katz, J.: A forward-secure public-key encryption scheme. In: Biham, E. (ed.) EUROCRYPT 2003. LNCS, vol. 2656, Springer, Heidelberg (2003)Google Scholar
  6. 6.
    Dodis, Y., Franklin, M., Katz, J., Miyaji, A., Yung, M.: Intrusion-resilient publickey encryption. In: Joye, M. (ed.) CT-RSA 2003. LNCS, vol. 2612, pp. 19–32. Springer, Heidelberg (2003)CrossRefGoogle Scholar
  7. 7.
    Dodis, Y., Katz, J., Xu, S., Yung, M.: Key-insulated public-key cryptosystems. In: Knudsen, L.R. (ed.) EUROCRYPT 2002. LNCS, vol. 2332, p. 65. Springer, Heidelberg (2002)CrossRefGoogle Scholar
  8. 8.
    Dodis, Y., Katz, J., Xu, S., Yung, M.: Strong key-insulated signature schemes. In: Desmedt, Y.G. (ed.) PKC 2003. LNCS, vol. 2567, pp. 130–144. Springer, Heidelberg (2002)CrossRefGoogle Scholar
  9. 9.
    Itkis, G.: Intrusion-resilient signatures: generic constructions; or defeating a strong adversary with minimal assumptions. In: Cimato, S., Galdi, C., Persiano, G. (eds.) SCN 2002. LNCS, vol. 2576, pp. 102–118. Springer, Heidelberg (2003)CrossRefGoogle Scholar
  10. 10.
    Itkis, G., Reyzin, L.: SiBIR: signer-base intrusion-resilient signatures. In: Yung, M. (ed.) CRYPTO 2002. LNCS, vol. 2442, p. 499. Springer, Heidelberg (2002)CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2004

Authors and Affiliations

  • Yevgeniy Dodis
    • 1
  • Matt Franklin
    • 2
  • Jonathan Katz
    • 3
  • Atsuko Miyaji
    • 4
  • Moti Yung
    • 5
  1. 1.Department of Computer ScienceNew York University 
  2. 2.University of CaliforniaDavis
  3. 3.Department of Computer ScienceUniversity of Maryland 
  4. 4.Japan Advanced Institute of Science and Technology 
  5. 5.Department of Computer ScienceColumbia University 

Personalised recommendations