k-Resilient Identity-Based Encryption in the Standard Model

  • Swee-Huay Heng
  • Kaoru Kurosawa
Part of the Lecture Notes in Computer Science book series (LNCS, volume 2964)


We present and analyze an adaptive chosen ciphertext secure (IND-CCA) identity-based encryption scheme (IBE) based on the well studied Decisional Diffie-Hellman (DDH) assumption. The scheme is provably secure in the standard model assuming the adversary can corrupt up to a maximum of k users adaptively. This is contrary to the Boneh-Franklin scheme which holds in the random-oracle model.


identity-based encryption standard model 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Boneh, D., Franklin, M.: An efficient public key traitor tracing scheme. In: Wiener, M. (ed.) CRYPTO 1999. LNCS, vol. 1666, pp. 338–353. Springer, Heidelberg (1999)Google Scholar
  2. 2.
    Boneh, D., Franklin, M.: Identity-based encryption from the weil pairing. In: Kilian, J. (ed.) CRYPTO 2001. LNCS, vol. 2139, pp. 213–229. Springer, Heidelberg (2001)CrossRefGoogle Scholar
  3. 3.
    Boneh, D., Franklin, M.: Identity-based encryption from the weil pairing. Siam Journal of Computing 32, 586–615 (2003), Updated version of [2]zbMATHCrossRefMathSciNetGoogle Scholar
  4. 4.
    Canetti, R., Goldreich, O., Halevi, S.: The random oracle model, revisited. In: 30th Annual ACM Symposium on Theory of Computing — STOC 1998, pp. 209–218 (1998)Google Scholar
  5. 5.
    Cocks, C.: An identity based encryption scheme based on quadratic residues. In: Honary, B. (ed.) Cryptography and Coding 2001. LNCS, vol. 2260, pp. 360–363. Springer, Heidelberg (2001)CrossRefGoogle Scholar
  6. 6.
    Cramer, R., Shoup, V.: A practical public key cryptosystem provably secure against adaptive chosen ciphertext attack. In: Krawczyk, H. (ed.) CRYPTO 1998. LNCS, vol. 1462, pp. 13–25. Springer, Heidelberg (1998)Google Scholar
  7. 7.
    Cramer, R., Shoup, V.: Design and analysis of practical public-key encryption scheme secure against adaptive chosen ciphertext attack. Manuscript (2001), To appear in Siam Journal of ComputingGoogle Scholar
  8. 8.
    Desmedt, Y., Quisquater, J.: Public-key systems based on the difficulty of tampering. In: Odlyzko, A.M. (ed.) CRYPTO 1986. LNCS, vol. 263, pp. 111–117. Springer, Heidelberg (1987)Google Scholar
  9. 9.
    Dodis, Y., Fazio, N.: Public key trace and revoke scheme secure against adaptive chosen ciphertext attack. In: Desmedt, Y.G. (ed.) PKC 2003. LNCS, vol. 2567, pp. 100–115. Springer, Heidelberg (2002), Full version available at CrossRefGoogle Scholar
  10. 10.
    Dodis, Y., Katz, J., Xu, S., Yung, M.: Key-insulated public key cryptosystems. In: Knudsen, L.R. (ed.) EUROCRYPT 2002. LNCS, vol. 2332, pp. 65–82. Springer, Heidelberg (2002)CrossRefGoogle Scholar
  11. 11.
    El Gamal, T.: A public-key cryptosystem and a signature scheme based on the discrete logarithm. IEEE Transactions on Information Theory 31(4), 469–472 (1985)zbMATHCrossRefGoogle Scholar
  12. 12.
    Hühnlein, D., Jacobson, M.J., Weber, D.: Towards practical non-interactive public key cryptosystems using non-maximal imaginary quadratic orders. In: Stinson, D.R., Tavares, S. (eds.) SAC 2000. LNCS, vol. 2012, pp. 275–287. Springer, Heidelberg (2001)CrossRefGoogle Scholar
  13. 13.
    Kurosawa, K., Desmedt, Y.: Optimum traitor tracing and asymmetric schemes. In: Nyberg, K. (ed.) EUROCRYPT 1998. LNCS, vol. 1403, pp. 145–157. Springer, Heidelberg (1998)CrossRefGoogle Scholar
  14. 14.
    Kurosawa, K., Yoshida, T.: Linear code implies public-key traitor tracing. In: Naccache, D., Paillier, P. (eds.) PKC 2002. LNCS, vol. 2274, pp. 172–187. Springer, Heidelberg (2002)CrossRefGoogle Scholar
  15. 15.
    Maurer, U., Yacobi, Y.: Non-interactive public-key cryptography. In: Davies, D.W. (ed.) EUROCRYPT 1991. LNCS, vol. 547, pp. 498–507. Springer, Heidelberg (1991)Google Scholar
  16. 16.
    Pedersen, T.: Non-interactive and information-theoretic secure verifiable secret sharing. In: Feigenbaum, J. (ed.) CRYPTO 1991. LNCS, vol. 576, pp. 129–140. Springer, Heidelberg (1992)Google Scholar
  17. 17.
    Rackoff, C., Simon, D.: Non-interactive zero-knowledge proof of knowledge and chosen ciphertext attack. In: Feigenbaum, J. (ed.) CRYPTO 1991. LNCS, vol. 576, pp. 433–444. Springer, Heidelberg (1992)Google Scholar
  18. 18.
    Shamir, A.: Identity-based cryptosystems and signature schemes. In: Blakely, G.R., Chaum, D. (eds.) CRYPTO 1984. LNCS, vol. 196, pp. 47–53. Springer, Heidelberg (1985)CrossRefGoogle Scholar
  19. 19.
    Sakai, R., Ohgishi, K., Kasahara, M.: Cryptosystems based on pairing over elliptic curve. In: Symposium on Cryptography and Information Security — SCIS 2001, pp. 369–372 (2001) (in Japanese)Google Scholar
  20. 20.
    Tanaka, H.: A realization scheme for the identity-based cryptosystem. In: Pomerance, C. (ed.) CRYPTO 1987. LNCS, vol. 293, pp. 341–349. Springer, Heidelberg (1988)Google Scholar
  21. 21.
    Tsuji, S., Itoh, T.: An ID-based cryptosystem based on the discrete logarithm problem. IEEE Journal on Selected Areas in Communication 7(4), 467–473 (1989)CrossRefGoogle Scholar
  22. 22.
    Yacobi, Y.: A note on the bilinear Diffie-Hellman assumption. IACR Cryptology ePrint Archive, Report 2002/113, Available from

Copyright information

© Springer-Verlag Berlin Heidelberg 2004

Authors and Affiliations

  • Swee-Huay Heng
    • 1
  • Kaoru Kurosawa
    • 2
  1. 1.Department of Communications and Integrated SystemsTokyo Institute of TechnologyTokyoJapan
  2. 2.Department of Computer and Information SciencesIbaraki UniversityHitachi, IbarakiJapan

Personalised recommendations