Design of AES Based on Dual Cipher and Composite Field

  • Shee-Yau Wu
  • Shih-Chuan Lu
  • Chi Sung Laih
Part of the Lecture Notes in Computer Science book series (LNCS, volume 2964)


Recently, Barkan and Biham proposed the concept of dual ciphers and pointed out that there are 240 dual ciphers of AES (Dual AES). An interesting application of dual ciphers is to design a cipher which run faster than the original cipher. In this paper, we first generalize the dual AES and propose a complete setup procedure to determine all dual ciphers. Then, a hardware implementation of AES based on the combination of dual cipher and composite field is proposed. We demonstrate that our AES design not only offers better performance and smaller area requirement than the design proposed by Wolkerstorfer et al which uses a composite field only. Our results confirm Barkan et al.’s conjecture that it is possible to design an AES cipher more efficiency than ever.


Hardware Implementation Block Cipher Federal Information Processing Standard Iterative Circuit Pipeline Circuit 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    National Institute of Standards and Technology (NIST). Advanced Encryption Standard (AES). FIPS Publication 197 (November 2001), Available at
  2. 2.
    Barkan, E., Biham, E.: In How Many Ways Can You Write Rijndael. In: Zheng, Y. (ed.) ASIACRYPT 2002. LNCS, vol. 2501, pp. 160–175. Springer, Heidelberg (2002)CrossRefGoogle Scholar
  3. 3.
    Rudra, P., Dubey, C., Jutla, V., Kumar, J., Rao, P.: Efficient Rijndael Encryption Implementation with Composite Field Arithmetic. In: Koç, Ç.K., Naccache, D., Paar, C. (eds.) CHES 2001. LNCS, vol. 2162, pp. 171–184. Springer, Heidelberg (2001)CrossRefGoogle Scholar
  4. 4.
    Wolkerstorfer, J., Oswald, E.: An ASIC Implementation of the AES Sboxes. In: Preneel, B. (ed.) CT-RSA 2002. LNCS, vol. 2271, pp. 67–78. Springer, Heidelberg (2002)CrossRefGoogle Scholar
  5. 5.
    Ichikawa, T., Kasuya, T., Matsui, M.: Hardware Evaluation of the AES Finalists. In: The Third Advanced Encryption Standard Candidate Conference, pp. 279–285 (2000), , Available at
  6. 6.
    Kua, H., Verbauwhede, I.: Architectural Optimization for a 1.82Gbits/sec VLSI Implementation of the AES Rijndael Algorithm. In: Koç, Ç.K., Naccache, D., Paar, C. (eds.) CHES 2001. LNCS, vol. 2162, pp. 51–64. Springer, Heidelberg (2001)CrossRefGoogle Scholar
  7. 7.
    Satoh, S., Morioka, K.: A Compact Rijndael Hardware Architecture with S-Box Optimization. In: Boyd, C. (ed.) ASIACRYPT 2001. LNCS, vol. 2248, pp. 239–254. Springer, Heidelberg (2001)CrossRefGoogle Scholar
  8. 8.
    McLoone, M., et al.: High performance single-chip FPGA Rijndael algorithm implementations. In: Koç, Ç.K., Naccache, D., Paar, C. (eds.) CHES 2001. LNCS, vol. 2162, pp. 65–76. Springer, Heidelberg (2001)CrossRefGoogle Scholar
  9. 9.
    Morioka, S., Satoh, A.: An Optimized S-Box Circuit Architecture for Low Power AES Design. In: Kaliski Jr., B.S., Koç, Ç.K., Paar, C. (eds.) CHES 2002. LNCS, vol. 2523, pp. 172–186. Springer, Heidelberg (2003)CrossRefGoogle Scholar
  10. 10.
    Daemen, J., Rijmen, V.: The Design of Rijndael. Springer printed in Germany (2002)Google Scholar
  11. 11.
    Lidl, R., Niederreiter, H.: Introduction to finite fields and their applications. Cambridge University Press, Cambridge (1986)zbMATHGoogle Scholar
  12. 12.
    MacWilliams, F.J., Sloane, N.J.A.: The Theory of Error-Correcting Codes. North- Holland Publishing Company, Amsterdam (1978)Google Scholar
  13. 13.
    Paar, C.: Efficient VLSI Architectures for Bit Parallel Computation in Galois Fields. PhD Thesis, Institute for Experimental Mathematics, University of Essen, Germany (1994)Google Scholar
  14. 14.
    Rijmen, V.: Efficient Implementation of the Rijndael S-box, Available at
  15. 15.
    Standaert, F.-X., Rouvroy, G., Quisquater, J.-J., Legat, J.-D.: Efficient Implementation of Rijndael Encryption in Reconfigurable Hardware: Improvements and Design Tradeoffs. Accepted at Workshop on Cryptographic Hardware and Embedded Systems (CHES 2003) (September 2003)Google Scholar
  16. 16.
    Chen, K.Y., Chen, P.D., Laih, C.S.: Speed up AES with the modification of shift row table. Public Comments on the Draft Federal Information Processing Standard ( FIPS ) (2001)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2004

Authors and Affiliations

  • Shee-Yau Wu
    • 1
  • Shih-Chuan Lu
    • 1
  • Chi Sung Laih
    • 1
  1. 1.Department of Electrical EngineeringNational Cheng Kung UniversityTainanTaiwan

Personalised recommendations