Skip to main content

Two-Step Genetic Programming for Optimization of RNA Common-Structure

  • Conference paper
Applications of Evolutionary Computing (EvoWorkshops 2004)

Part of the book series: Lecture Notes in Computer Science ((LNCS,volume 3005))

Included in the following conference series:

Abstract

We present an algorithm for identifying putative non-coding RNA (ncRNA) using an RCSG (RNA Common-Structural Grammar) and show the effectiveness of the algorithm. The algorithm consists of two steps: structure learning step and sequence learning step. Both steps are based on genetic programming. Generally, genetic programming has been applied to learning programs automatically, reconstructing networks, and predicting protein secondary structures. In this study, we use genetic programming to optimize structural grammars. The structural grammars can be formulated as rules of tree structure including function variables. They can be learned by genetic programming. We have defined the rules on how structure definition grammars can be encoded into function trees. The performance of the algorithm is demonstrated by the results obtained from the experiments with RCSG of tRNA and 5S small RNA.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Rivas, E., Eddy, S.R.: A dynamic programming algorithm for RNA structure prediction including pseudoknots. J. Mol. Biol. 285, 2053–2068 (1999)

    Article  Google Scholar 

  2. Zuker, M.: On finding all suboptimal foldings of an RNA molecule. Science 244, 48–52 (1989)

    Article  MathSciNet  Google Scholar 

  3. Eddy, S.R., Durbin, R.: RNA sequence analysis using covariance models. Nucleic Acids Research 22, 2079–2088 (1994)

    Article  Google Scholar 

  4. Gorodkin, J., Stricklin, S.L., Stormo, G.D.: Discovering common stem-loop motifs in unaligned RNA sequences. Nucleic Acids Reearch 29, 2135–2144 (2001)

    Article  Google Scholar 

  5. Perriquet, O., Touzet, H., Dauchet, M.: Finding the common structure shared by two homolous RNAs. Bioinformatics 19, 108–116 (2003)

    Article  Google Scholar 

  6. Fogel, G.B., William Porto, V., Weekers, D.G., Fogel, D.B., Griffey, R.H., McNeil, J.A., Lesnik, E., Ecker, D.J., Sampath, R.: Discovery of RNA structural elements using evolutionary computation. Nucleic Acids Research 30, 5310–5317 (2002)

    Article  Google Scholar 

  7. Chen, J.-H., Le, S.-Y., Maizel, J.V.: Prediction of common secondary structures of RNAs: a genetic algorithm approach. Nucleic Acids Research 28, 991–999 (2000)

    Article  Google Scholar 

  8. Sakakibara, Y.: Pair Hidden Markov models on tree structures Bioinformatics. Bioinformatics 19, i232– i240 (2003)

    Article  Google Scholar 

  9. Cai, L., Malmberg, R.L., Wu, Y.: Stochastic modeling or RNA pseudoknotted structures: a grammatical approach. Bioinformatics 19, i66–i73 (2003)

    Article  Google Scholar 

  10. Sakakibara, Y., Brwon, M., Hughey, R., Mian, I.S., Sjolander, K., Underwood, R.C., Haussler, D.: Stochastic context-free grammars for tRNA modeling. Nucleic Acids Research 22, 5112–5120 (1994)

    Article  Google Scholar 

  11. Knudsen, B., Hein, J.: RNA secondary structure prediction using stochastic context-free grammars and evolutionary history. Bioinformatics 15, 446–454 (1999)

    Article  Google Scholar 

  12. Macke, T.J., Ecker, D.J., Gutell, R.R., Gautheret, D., Case, D.A., Sampath, R.: RNAMotif, an RNA secondary structure definition and search algorithms. Nucleic Acids Research 29, 4724–4735 (2001)

    Article  Google Scholar 

  13. Koza, J.R.: Genetic Programming: On the Programming of Computers by Means of Natural Selection. MIT Press, Cambridge (1992)

    MATH  Google Scholar 

  14. Zhang, B.-T., Ohm, P., Mühlenbein, H.: Evolutionary neural trees for modeling and predicting complex systems. Engineering Applications of Artificial Intelligence 10, 473–483 (1997)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2004 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Nam, JW., Joung, JG., Ahn, Y.S., Zhang, BT. (2004). Two-Step Genetic Programming for Optimization of RNA Common-Structure. In: Raidl, G.R., et al. Applications of Evolutionary Computing. EvoWorkshops 2004. Lecture Notes in Computer Science, vol 3005. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-24653-4_8

Download citation

  • DOI: https://doi.org/10.1007/978-3-540-24653-4_8

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-21378-9

  • Online ISBN: 978-3-540-24653-4

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics