Competitive Goal Coordination in Automatic Parking

  • Darío Maravall
  • Javier de Lope
  • Miguel Ángel Patricio
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 3005)


This paper addresses the problem of automatic parking by a back-wheel drive vehicle, using a biomimetic model based on direct coupling between vehicle perceptions and actions. The proposed automatic parking solution leads to a dynamic multiobjective optimization problem that cannot be dealt with analytically. A genetic algorithm is therefore used. The paper ends with a discussion of the results of computer simulations.


Genetic Algorithm Autonomous Robot Parking Space Approach Goal Biomimetic Approach 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Maravall, D., de Lope, J.: A Bio-Inspired Robotic Mechanism for Autonomous Locomotion in Unconventional Environments. In: Zhou, C., Maravall, D., Ruan, D. (eds.) Autonomous Robotic Systems: Soft Computing and Hard Computing Methodologies and Applications, pp. 263–292. Physica, Heidelberg (2003)Google Scholar
  2. 2.
    Maravall, D., de Lope, J.: A Reinforcement Learning Method for Dynamic Obstacle Avoidance in Robotic Mechanisms. In: Ruan, D., D’Hondt, P., Kerre, E.E. (eds.) Computational Intelligent Systems for Applied Research, pp. 485–494. World Scientific, Singapore (2002)Google Scholar
  3. 3.
    de Lope, J., Maravall, D.: Integration of Reactive Utilitarian Navigation and Topological Modeling. In: Zhou, C., Maravall, D., Ruan, D. (eds.) Autonomous Robotic Systems: Soft Computing and Hard Computing Methodologies and Applications, pp. 103–139. Physica, Heidelberg (2003)Google Scholar
  4. 4.
    Maravall, D., de Lope, J.: Integration of Potential Field Theory and Sensory-based Search in Autonomous Navigation. In: 15th IFAC World Congress, International Federation of Automatic Control, Barcelona (2002)Google Scholar
  5. 5.
    Laumond, J.-P., Jacobs, P.E., Taix, M., Murray, R.M.: A motion planner for nonholonomic mobile robots. IEEE Trans. on Robotics and Automation 10(5), 577–593 (1996)CrossRefGoogle Scholar
  6. 6.
    Paromtchik, I.E., Laugier, C.: Motion generation and control for parking an autonomous vehicle. In: Proc. IEEE Int. Conf. on Robotics and Automation, Minneapolis, pp. 3117–3122 (1996)Google Scholar
  7. 7.
    Kong, S.G., Kosko, B.: Comparison of fuzzy and neural track backer-upper control systems. In: Kosko, B. (ed.) Neural Networks and Fuzzy Systems, pp. 339–361. Prentice-Hall, Englewood Cliffs (1992)Google Scholar
  8. 8.
    Gu, D., Hu, H.: Neural predictive control for a car-like mobile robot. Robotics and Autonomous Systems 39, 73–86 (2002)CrossRefGoogle Scholar
  9. 9.
    Hitchings, M., Vlacic, L., Kecman, V.: Fuzzy control. In: Vlacic, L., Parent, M., Harashima, F. (eds.) Intelligent Vehicle Technologies, pp. 289–331. Butterworth&Heinemann, Oxford (2001)CrossRefGoogle Scholar
  10. 10.
    Cordón, O., Herrera, F., Hoffmann, F., Magdalena, L.: Genetic Fuzzy Systems. World Scientific, Singapore (2001)zbMATHGoogle Scholar
  11. 11.
    Chipperfield, A., Fleming, P., Pohlheim, H., Fonseca, C.: Genetic Algorithm Toolbox for Matlab, Department of Automatic Control and Systems Engineering, University of Sheffield (1994)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2004

Authors and Affiliations

  • Darío Maravall
    • 1
  • Javier de Lope
    • 1
  • Miguel Ángel Patricio
    • 2
  1. 1.Department of Artificial Intelligence Faculty of Computer ScienceUniversidad Politécnica de MadridMadridSpain
  2. 2.Department of Computer ScienceUniversidad Carlos III de Madrid 

Personalised recommendations